×
INFO  : Compiling command(queryId=hive_20240327071554_8c38e364-65a8-4f9a-aac6-5948e1c73bfe): -- Drop for retesting purposes
DROP TABLE student.releasedates
INFO  : Semantic Analysis Completed
INFO  : Returning Hive schema: Schema(fieldSchemas:null, properties:null)
INFO  : Completed compiling command(queryId=hive_20240327071554_8c38e364-65a8-4f9a-aac6-5948e1c73bfe); Time taken: 0.004 seconds
INFO  : Concurrency mode is disabled, not creating a lock manager
INFO  : Executing command(queryId=hive_20240327071554_8c38e364-65a8-4f9a-aac6-5948e1c73bfe): -- Drop for retesting purposes
DROP TABLE student.releasedates
INFO  : Starting task [Stage-0:DDL] in serial mode
INFO  : Completed executing command(queryId=hive_20240327071554_8c38e364-65a8-4f9a-aac6-5948e1c73bfe); Time taken: 0.023 seconds
INFO  : OK
 Success.

My Snippet

-- Current netflix2023 table wasn't uploaded properly and has all null values for `Release Date`
-- Create table with release dates that contains title and releasedate
CREATE TABLE student.releasedates (
title STRING,
releasedate STRING
)
ROW FORMAT DELIMITED
FIELDS TERMINATED BY ','
STORED AS TEXTFILE
LOCATION '/user/student/netflix'
;
XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
    ×
    INFO  : Compiling command(queryId=hive_20240327071559_75841a8c-52eb-4221-8bd5-349a6e79d10e): -- Current netflix2023 table wasn't uploaded properly and has all null values for `Release Date`
    -- Create table with release dates that contains title and releasedate
    CREATE TABLE student.releasedates (
        title STRING,
        releasedate STRING
    )
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    STORED AS TEXTFILE
    LOCATION '/user/student/netflix'
    INFO  : Semantic Analysis Completed
    INFO  : Returning Hive schema: Schema(fieldSchemas:null, properties:null)
    INFO  : Completed compiling command(queryId=hive_20240327071559_75841a8c-52eb-4221-8bd5-349a6e79d10e); Time taken: 0.002 seconds
    INFO  : Concurrency mode is disabled, not creating a lock manager
    INFO  : Executing command(queryId=hive_20240327071559_75841a8c-52eb-4221-8bd5-349a6e79d10e): -- Current netflix2023 table wasn't uploaded properly and has all null values for `Release Date`
    -- Create table with release dates that contains title and releasedate
    CREATE TABLE student.releasedates (
        title STRING,
        releasedate STRING
    )
    ROW FORMAT DELIMITED
    FIELDS TERMINATED BY ','
    STORED AS TEXTFILE
    LOCATION '/user/student/netflix'
    INFO  : Starting task [Stage-0:DDL] in serial mode
    INFO  : Completed executing command(queryId=hive_20240327071559_75841a8c-52eb-4221-8bd5-349a6e79d10e); Time taken: 0.023 seconds
    INFO  : OK
     Success.

    My Snippet

    -- Check CSV was uploaded properly and values exist in table
    SELECT * FROM student.releasedates LIMIT 5;
    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
      ×
      INFO  : Compiling command(queryId=hive_20240327071650_6f1bcd71-2da4-41eb-bf48-ebef7629d1a9): -- Check CSV was uploaded properly and values exist in table
      SELECT * FROM student.releasedates LIMIT 5
      INFO  : Semantic Analysis Completed
      INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:releasedates.title, type:string, comment:null), FieldSchema(name:releasedates.releasedate, type:string, comment:null)], properties:null)
      INFO  : Completed compiling command(queryId=hive_20240327071650_6f1bcd71-2da4-41eb-bf48-ebef7629d1a9); Time taken: 0.046 seconds
      INFO  : Concurrency mode is disabled, not creating a lock manager
      INFO  : Executing command(queryId=hive_20240327071650_6f1bcd71-2da4-41eb-bf48-ebef7629d1a9): -- Check CSV was uploaded properly and values exist in table
      SELECT * FROM student.releasedates LIMIT 5
      INFO  : Completed executing command(queryId=hive_20240327071650_6f1bcd71-2da4-41eb-bf48-ebef7629d1a9); Time taken: 0.001 seconds
      INFO  : OK
        releasedates.title releasedates.releasedate
        releasedates.title releasedates.releasedate
      1The Night Agent: Season 12023-03-23
      2Ginny & Georgia: Season 22023-01-05
      3The Glory: Season 1 // 더 글로리: 시즌 12022-12-30
      4Wednesday: Season 12022-11-23
      5Queen Charlotte: A Bridgerton Story2023-05-04

      My Snippet

      -- Drop for retesting purposes
      DROP VIEW student.corrected_netflix2023;
      XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
        ×
        INFO  : Compiling command(queryId=hive_20240327071657_be4af6d9-1174-4299-a0c6-4124723ad504): -- Drop for retesting purposes
        DROP VIEW student.corrected_netflix2023
        INFO  : Semantic Analysis Completed
        INFO  : Returning Hive schema: Schema(fieldSchemas:null, properties:null)
        INFO  : Completed compiling command(queryId=hive_20240327071657_be4af6d9-1174-4299-a0c6-4124723ad504); Time taken: 0.004 seconds
        INFO  : Concurrency mode is disabled, not creating a lock manager
        INFO  : Executing command(queryId=hive_20240327071657_be4af6d9-1174-4299-a0c6-4124723ad504): -- Drop for retesting purposes
        DROP VIEW student.corrected_netflix2023
        INFO  : Starting task [Stage-0:DDL] in serial mode
        INFO  : Completed executing command(queryId=hive_20240327071657_be4af6d9-1174-4299-a0c6-4124723ad504); Time taken: 0.013 seconds
        INFO  : OK
         Success.

        My Snippet

        -- Create view containing all netflix2023 values and releasedates from
        -- releasedates table earlier, joined on the first English part of the title
        -- as joining on full text narrows matching rows due to text upload issues
        CREATE VIEW student.corrected_netflix2023 AS
        SELECT
        n.title,
        n.availableglobally,
        t.releasedate,
        n.hoursviewed,
        n.numberofratings,
        n.rating,
        n.genre,
        n.keywords,
        n.description
        FROM
        default.netflix2023 n
        LEFT OUTER JOIN
        student.releasedates t
        ON
        split(n.title, '//')[0] = split(t.title, '//')[0];
        XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
          ×
          INFO  : Compiling command(queryId=hive_20240327071702_d95f0a40-55f5-44fb-a486-910fb2d6d522): -- Create view containing all netflix2023 values and releasedates from
          -- releasedates table earlier, joined on the first English part of the title
          -- as joining on full text narrows matching rows due to text upload issues
          CREATE VIEW student.corrected_netflix2023 AS
          SELECT 
              n.title,
              n.availableglobally,
              t.releasedate,
              n.hoursviewed,
              n.numberofratings,
              n.rating,
              n.genre,
              n.keywords,
              n.description
          FROM 
              default.netflix2023 n
          LEFT OUTER JOIN 
              student.releasedates t 
          ON 
              split(n.title, '//')[0] = split(t.title, '//')[0]
          INFO  : Semantic Analysis Completed
          INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:title, type:string, comment:null), FieldSchema(name:availableglobally, type:string, comment:null), FieldSchema(name:releasedate, type:string, comment:null), FieldSchema(name:hoursviewed, type:bigint, comment:null), FieldSchema(name:numberofratings, type:bigint, comment:null), FieldSchema(name:rating, type:double, comment:null), FieldSchema(name:genre, type:string, comment:null), FieldSchema(name:keywords, type:string, comment:null), FieldSchema(name:description, type:string, comment:null)], properties:null)
          INFO  : Completed compiling command(queryId=hive_20240327071702_d95f0a40-55f5-44fb-a486-910fb2d6d522); Time taken: 0.036 seconds
          INFO  : Concurrency mode is disabled, not creating a lock manager
          INFO  : Executing command(queryId=hive_20240327071702_d95f0a40-55f5-44fb-a486-910fb2d6d522): -- Create view containing all netflix2023 values and releasedates from
          -- releasedates table earlier, joined on the first English part of the title
          -- as joining on full text narrows matching rows due to text upload issues
          CREATE VIEW student.corrected_netflix2023 AS
          SELECT 
              n.title,
              n.availableglobally,
              t.releasedate,
              n.hoursviewed,
              n.numberofratings,
              n.rating,
              n.genre,
              n.keywords,
              n.description
          FROM 
              default.netflix2023 n
          LEFT OUTER JOIN 
              student.releasedates t 
          ON 
              split(n.title, '//')[0] = split(t.title, '//')[0]
          INFO  : Starting task [Stage-1:DDL] in serial mode
          INFO  : Completed executing command(queryId=hive_20240327071702_d95f0a40-55f5-44fb-a486-910fb2d6d522); Time taken: 0.014 seconds
          INFO  : OK
           Success.

          My Snippet

          -- Ensure there are 18332 values
          -- Note there are 18739, but that's okay long as we matched as many dates as possible
          -- and we can filter values out later
          SELECT COUNT(*) FROM student.corrected_netflix2023
          XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
            ×
            INFO  : Compiling command(queryId=hive_20240327071708_f79e47e9-0d8f-4b5f-a100-ba78933f22f8): -- Ensure there are 18332 values
            -- Note there are 18739, but that's okay long as we matched as many dates as possible
            -- and we can filter values out later
            SELECT COUNT(*) FROM student.corrected_netflix2023
            INFO  : Semantic Analysis Completed
            INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:_c0, type:bigint, comment:null)], properties:null)
            INFO  : Completed compiling command(queryId=hive_20240327071708_f79e47e9-0d8f-4b5f-a100-ba78933f22f8); Time taken: 0.045 seconds
            INFO  : Concurrency mode is disabled, not creating a lock manager
            INFO  : Executing command(queryId=hive_20240327071708_f79e47e9-0d8f-4b5f-a100-ba78933f22f8): -- Ensure there are 18332 values
            -- Note there are 18739, but that's okay long as we matched as many dates as possible
            -- and we can filter values out later
            SELECT COUNT(*) FROM student.corrected_netflix2023
            INFO  : Query ID = hive_20240327071708_f79e47e9-0d8f-4b5f-a100-ba78933f22f8
            INFO  : Total jobs = 1
            INFO  : Launching Job 1 out of 1
            INFO  : Starting task [Stage-1:MAPRED] in serial mode
            INFO  : Session is already open
            INFO  : Dag name: -- Ensure there are 1...orrected_netflix2023(Stage-1)
            INFO  : Setting tez.task.scale.memory.reserve-fraction to 0.30000001192092896
            INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
            
            INFO  : Map 1: 0/1	Map 3: 0/1	Reducer 2: 0/1	
            INFO  : Map 1: 0/1	Map 3: 0(+1)/1	Reducer 2: 0/1
            INFO  : Map 1: 0(+1)/1	Map 3: 0(+1)/1	Reducer 2: 0/1	
            INFO  : Map 1: 0(+1)/1	Map 3: 1/1	Reducer 2: 0/1
            INFO  : Map 1: 1/1	Map 3: 1/1	Reducer 2: 0/1	
            INFO  : Map 1: 1/1	Map 3: 1/1	Reducer 2: 0(+1)/1	
            INFO  : Map 1: 1/1	Map 3: 1/1	Reducer 2: 1/1	
            INFO  : Completed executing command(queryId=hive_20240327071708_f79e47e9-0d8f-4b5f-a100-ba78933f22f8); Time taken: 6.297 seconds
            INFO  : OK
              _c0
              _c0
            118739

            My Snippet

            -- Preview for quality control
            SELECT * FROM student.corrected_netflix2023
            XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
              ×
              INFO  : Compiling command(queryId=hive_20240327071719_feea5644-d6f3-4361-9434-b8f9136aac20): -- Preview for quality control
              SELECT * FROM student.corrected_netflix2023
              INFO  : Semantic Analysis Completed
              INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:corrected_netflix2023.title, type:string, comment:null), FieldSchema(name:corrected_netflix2023.availableglobally, type:string, comment:null), FieldSchema(name:corrected_netflix2023.releasedate, type:string, comment:null), FieldSchema(name:corrected_netflix2023.hoursviewed, type:bigint, comment:null), FieldSchema(name:corrected_netflix2023.numberofratings, type:bigint, comment:null), FieldSchema(name:corrected_netflix2023.rating, type:double, comment:null), FieldSchema(name:corrected_netflix2023.genre, type:string, comment:null), FieldSchema(name:corrected_netflix2023.keywords, type:string, comment:null), FieldSchema(name:corrected_netflix2023.description, type:string, comment:null)], properties:null)
              INFO  : Completed compiling command(queryId=hive_20240327071719_feea5644-d6f3-4361-9434-b8f9136aac20); Time taken: 0.038 seconds
              INFO  : Concurrency mode is disabled, not creating a lock manager
              INFO  : Executing command(queryId=hive_20240327071719_feea5644-d6f3-4361-9434-b8f9136aac20): -- Preview for quality control
              SELECT * FROM student.corrected_netflix2023
              INFO  : Query ID = hive_20240327071719_feea5644-d6f3-4361-9434-b8f9136aac20
              INFO  : Total jobs = 1
              INFO  : Launching Job 1 out of 1
              INFO  : Starting task [Stage-1:MAPRED] in serial mode
              INFO  : Session is already open
              INFO  : Dag name: -- Preview for qualit...orrected_netflix2023(Stage-1)
              INFO  : Setting tez.task.scale.memory.reserve-fraction to 0.30000001192092896
              INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
              
              INFO  : Map 1: 0/1	Map 2: 0(+1)/1	
              INFO  : Map 1: 0(+1)/1	Map 2: 1/1
              INFO  : Map 1: 1/1	Map 2: 1/1	
              INFO  : Completed executing command(queryId=hive_20240327071719_feea5644-d6f3-4361-9434-b8f9136aac20); Time taken: 2.5 seconds
              INFO  : OK
                corrected_netflix2023.title corrected_netflix2023.availableglobally corrected_netflix2023.releasedate corrected_netflix2023.hoursviewed corrected_netflix2023.numberofratings corrected_netflix2023.rating corrected_netflix2023.genre corrected_netflix2023.keywords corrected_netflix2023.description
                corrected_netflix2023.title corrected_netflix2023.availableglobally corrected_netflix2023.releasedate corrected_netflix2023.hoursviewed corrected_netflix2023.numberofratings corrected_netflix2023.rating corrected_netflix2023.genre corrected_netflix2023.keywords corrected_netflix2023.description
              1Queen Charlotte: A Bridgerton StoryYes2023-05-04503000000456246.6Comedy - Romancetelenovela -drug trafficking -cartel -femme fatale -kidnappingWhile fleeing from dangerous assailants - an assassin comes out of hiding to protect the daughter she left earlier in life.
              2Ginny & Georgia: Season 1Yes2021-02-24302100000441025.6Action - Thrillerclose up of eye -close up of eyes -close up of lips -close up of mouth -childAfter barely surviving his grievous wounds from his mission in Dhaka - Bangladesh - Tyler Rake is back - and his team is ready to take on their next mission.
              3The MotherYes2023-05-1224990000068.6Sportracial tension -black american -couple -love -lifeA young American woman from the Midwest is hired by a marketing firm in Paris to provide them with an American perspective on things.
              4The Diplomat: Season 1Yes2023-04-20214100000608535.5Comedy - Romancefriend -best friend -volunteer -teenager -sonVillain's kidnap a man's daughter in order to get hold of forgery plates which they believe to be in his possession.
              5Luther: The Fallen SunYes2023-03-102097000003007.3Romancefemale protagonist -character name in series title -american in france -location in series title -marketingFinding a ghost named Ernest haunting their new home turns Kevin's family into overnight social media sensations. But when Kevin and Ernest investigate the mystery of Ernest's past - they become a target of the CIA.
              6Fake Profile: Season 1 // Perfil falso: Temporada 1No2023-05-3120650000081658.7Drama - Horror - Thrilleralice character -caterpillar character -the mad hatter character -march hare character -dormouse characterA world -weary detective is hired to investigate the murder of a West Point cadet. Stymied by the cadets' code of silence - he enlists one of their own to help unravel the case  - a young man the world would come to know as Edgar All...
              7XO - Kitty: Season 1YesNULL200700000496.8Comedyrapping animal -rapping penguin -talking animal -talking penguin -sequelShocking tragedies shatter a tight -knit South Carolina community and expose the horrifying secrets of its most powerful family.
              8Outer Banks: Season 1Yes2020-04-151840000001192466.2Adventure - Family - Fantasybritish noir -b movie -forgery plates -kidnapping a girl -rape and sexual intercourse innuendoThe last of a two -part film centered on the life and career of John Reed - the revolutionary communist journalist.
              9Sweet Tooth: Season 2Yes2023-04-27182300000744037.5Action - Crime - Dramaghost -house -chase -car chase -based on short storyTeresa Mendoza returns to Mexico after 8 years to fight with Mexican drug dealers.
              10Perfect Match: Season 1Yes2023-02-141768000003446Adventure - Comedy - Familymurder -year 1830 -1830s -19th century -winterHiding a mysterious past - a mother lives like a nameless fugitive with her daughter as they make hotels their home and see everyone else as a threat.
              11The Marked Heart: Season 2 // Pálpito: Temporada 2Yes2023-04-19174300000118698.4Shortyear 2014 -malaysia airlines flight mh370 -airplane -investigation -missingThree young women join the newly formed Women's Army Corps (WACS) for varied reasons - and make contributions to the war effort.
              12Murder Mystery 2Yes2023-03-311736000004196617.1Comedy - Crime - Dramajunk man -junk -junk wagon -city dump -landfillDocuseries following the FIA Formula One World Championship across multiple seasons.
              13Pablo Escobar - el patrón del mal: Season 1YesNULL168300000279.4Shortprom -sex comedy -female masturbation -female nudity -teen sex comedyTyler Rake - a fearless black market mercenary - embarks on the most deadly extraction of his career when he's enlisted to rescue the kidnapped son of an imprisoned international crime lord.
              14Never Have I Ever: Season 4Yes2023-02-10163000000155.6Animation - Shortmagic -power -young woman -soldier -gay manThings go badly for a hack director and film crew shooting a low budget zombie movie in an abandoned WWII Japanese facility - when they are attacked by real zombies.
              15Your Place or MineYes2022-12-21161100000189.4Drama - Fantasy - Horrorparody comedy -spoofIn the wake of King Edward's death - Uhtred of Bebbanburg and his comrades adventure across a fractured kingdom in the hopes of uniting England at last.
              16Chiquititas (2013)No2022-12-221576000001205.9Crime - Dramaspaghetti western -italo western -eastern -ostern -second partSonic in a high -octane adventure where the fate of a strange new multiverse rests in his gloved hands.
              17Alchemy of Souls: Part 1 // 환혼: 파트 1Yes2022-10-191521000003827.1Documentary - Shortcontroversy -girl -laundry drying on a clothesline -african american -clotheslineA German youth eagerly enters World War I - but his enthusiasm wanes as he gets a firsthand view of the horror.
              18Outer Banks: Season 2Yes2021-06-101514000001183526.6Crime - Horror - Mysterypsychological drama -overprotective mother -cult -hotel -peer pressureAn unusual and touching bond develops when grieving Oona reaches out to a mysterious homeless man - offering him a place to stay in her garden shed.
              19Til Money Do Us Part: Season 1 // Hasta que la plata nos separe: Temporada 1No2023-04-26148600000132166.1Documentarywacs -war widow -war game -male female relationship -father daughter relationshipA single mother who is a renowned hired killer finds it difficult to achieve a balance between her personal and work life.
              20Mr. Queen // 철인왕후No2022-12-1614690000068.6Sportf1 -formula 1 -motor sports -car race -championshipAn Interpol agent successfully tracks down the world's most wanted art thief with help from a rival thief. But nothing is as it seems as a series of double -crosses ensues.
              21Manifest: Season 1No2023-06-0914670000079Short - Dramayear in title -2000s -number in titleThale (17) has just moved with her parents to a small town after her mother has a new job in the local police. After a student is killed brutally at a party Thale attends - she becomes a key witness. Was the killer an animal? A wolf?
              22PAW Patrol: Season 6No2023-03-0114010000098356.8Documentary - Crimedrug dealers -kidnapping -child kidnapping -shot in the head -bangladeshApril 1940. The eyes of the world are on Narvik - a small town in northern Norway - source of the iron ore needed for Hitler's war machinery. Through two months of fierce winter warfare - Hitler is dealt his first defeat.
              23The Good Bad Mother: Limited Series // 나쁜엄마: 리미티드 시리즈Yes2023-06-151399000007407.6Drama - Romancesingle take -zombie -film crew -television broadcast -rooftopWhen a young girl stows away on the ship of a legendary sea monster hunter - they launch an epic journey into uncharted waters  - and make history to boot.
              24The Recruit: Season 1Yes2023-02-221393000004268807Comedylawyer -19th century -legal -legal drama -legal battleAn orphaned boy enrolls in a school of wizardry - where he learns the truth about himself - his family and the terrible evil that haunts the magical world.
              25Bloodhounds: Season 1 // 사냥개들: 시즌 1Yes2020-12-251366000001113617.6Action - Adventure - Dramaanglo saxon -kingdom -exploration -warrior -epicBased on the true story of a father and son who repair their fractured relationship during a forced hike of the Appalachian trail to find their beloved lost dog.
              26Glass Onion: A Knives Out MysteryYes2020-05-311362000001556.4Documentaryfast -based on video game -sonic the hedgehog -anthropomorphic animal -sonic the hedgehog characterCharlie Brandis leads a quiet and uneventful life as a wallflower. His parents trust him - his friends like him - girls are indifferent toward him. Then there's the girl he's watched from afar - Annie Briggs - who doesn't even know he...
              27Black Mirror: Season 6Yes2023-01-271348000001024.9Horrorlawyer -spin off -psychosomatic illness -criminal lawyer -drug tradeIt follows the rise and fall of the American financier and ponzi schemer: Madoff.
              28Triptych: Season 1 // Tríada: Temporada 1Yes2022-05-271336000001746.4Drama - Western1910s -anti war -shell shock -ptsd post traumatic stress disorder -depressionShort documentary about making the second season of The Witcher (2019).
              29Bridgerton: Season 1Yes2022-03-25133400000145919.2Drama - Horror -  SciFititle co written by female -title co directed by female -f ratedCharlie Brandis leads a quiet and uneventful life as a wallflower. His parents trust him - his friends like him - girls are indifferent toward him. Then there's the girl he's watched from afar - Annie Briggs - who doesn't even know he...
              30The Marked Heart: Season 1 // Pálpito: Temporada 1Yes2023-01-06120500000483708.5Documentary - Sportnon fictionMarion and Jack try to rekindle their relationship with a visit to Paris - home of Marion's parents  - - and several of her ex -boyfriends.
              31Little Angel: Volume 1Yes2023-04-281200000001631916Action - Comedy - Crimehomosexual -gay serial killer -murder -serial killer -homosexualityIn celebration of Season 2 being released soon - the Glitch Productions team put all of Season 1 into a single movie to watch in one go.
              32PAW Patrol: Season 5No2023-03-081189000002511.6Short - Comedynorwegian army -nazi invasion of norway -winter -year 1940 -man in uniformThree young women looking for adventure get jobs on a dude ranch.
              33Sex/Life: Season 1Yes2023-05-1911580000070577.4Biography - Crime - Dramacgi animation -bounty hunter -alien -danger -laser gunThe trials and tribulations of criminal lawyer Jimmy McGill in the years leading up to his fateful run -in with Walter White and Jesse Pinkman.
              34We Have a GhostYes2023-01-27113600000331796.9Action - Drama - Historydog -search -find -journey -fatherAn executive goes through an unexpected breakup - then accepting an assignment to go undercover and learn about the tourist industry in Vietnam.
              35Crash Landing on You: Season 1 // 사랑의 불시착: 시즌 1Yes2017-10-03102800000667508.1Drama - Wartv specialA lawyer defending a wealthy man begins to believe his client is guilty of more than just one crime.
              36MH370: The Plane That Disappeared: Limited SeriesYes2021-12-2910170000068865.5Action - Adventure - Dramaparty -teenager -sex comedyFollows the tragedy in which terrorists detonated a bomb at the Boston Marathon's finish line; they carried out the attack by placing two homemade pressure -cooker bombs that resulted in three fatalities and numerous injuries.
              37Breaking Bad: Season 2No2022-11-23990000002595.9Short - Biography - DramaprisonIm Hwa Ryeong - a prickly - sensitive and hot -tempered queen - tries to turn her trouble making princes into proper crown princes.
              38Lockwood & Co.: Season 1Yes2022-12-2197800000267.1Comedy - Talk -Showparty -teenager -sex comedyIt's 1940's Australia and siblings Maggie and Charles must endure taunts of newly enlisted teenagers - grapple with the fact that neither of them can fight in the war and resort to chess in order to pass the time.
              39You: Season 3Yes2022-05-209760000078.7Animation - Comedy -  SciFifemale full frontal nudity -female nudity -female frontal nudity -sex scene -country in titleElliott - a young fisherman with an extraordinary voice - gets the chance of a lifetime when high -profile music manager Suzanne discovers him at a party.
              40Breaking Bad: Season 5No2023-01-19951000008407.5Dramafrench -vacation -europe -chest hair -male nudityElliott - a young fisherman with an extraordinary voice - gets the chance of a lifetime when high -profile music manager Suzanne discovers him at a party.
              41Welcome to Eden: Season 2 // Bienvenidos a Edén: Temporada 2Yes2022-01-28946000002379.3Documentary - Shortbikini -women -young -f rated -best friendThe relationship of a well -known journalist and a down -to -earth teacher goes through hard times when she takes a new job.
              42CoComelon: Season 2No2023-03-2492900000437824.9Action - Adventure - Dramalawyer -spin off -psychosomatic illness -criminal lawyer -drug tradeIn spite of their many differences - Cassie - a struggling singer -songwriter - and Luke - a troubled Marine - agree to marry solely for military benefits - but when tragedy strikes - the line between real and pretend begins to blur.
              43The Blacklist: Season 1No2020-12-10922000001484057.9Biography - Crime - Dramamale nudity -quirky comedy -love -island -escapeTwo rival newsreel photographers join forces to find an aviatrix's missing brother - who has disappeared in the Amazon rainforest.
              44Shadow and Bone: Season 1Yes2021-05-3191400000161096.6Drama - History - Waranglo saxon -kingdom -exploration -warrior -epicA woman's life is turned upside -down when a dangerous man gets hold of her lost cell phone and uses it to track her every move.
              45The Unbroken Voice: Season 1 // Canto para no llorar - Arelys Henao: Temporada 1NoNULL91200000559797Animation - Adventure - ComedybusinessmanA woman's life is turned upside -down when a dangerous man gets hold of her lost cell phone and uses it to track her every move.
              46Demon Slayer: Kimetsu no Yaiba: Tanjiro Kamado - Unwavering Resolve Arc // 鬼滅の刃: 竈門炭治郎 立志編NoNULL87200000496.8Comedyboston marathon -boston marathon bombing -bomb -year 2013 -manhuntTen gorgeous singles meet in a tropical paradise. Little do they know that to win the EUR200 -000 prize - they'll have to completely give up sex.
              47That 90s Show: Part 1YesNULL86100000566.3Short - Horrorcharacter name as title -22nd century -future -robot -futuristicThis docuseries examining the chilling true stories of four Korean leaders claiming to be prophets exposes the dark side of unquestioning belief.
              48You: Season 2Yes2017-08-3186100000118698.4Shortschool -hero -academy -master -witchThe trials and tribulations of criminal lawyer Jimmy McGill in the years leading up to his fateful run -in with Walter White and Jesse Pinkman.
              49All of Us Are Dead: Season 1 // 지금 우리 학교는: 시즌 1Yes2022-11-15854000001936.6Documentarydonghua -chinese animation -chinese anime -team sports -basketballThis shocking documentary chronicles a happy -go -lucky nomad's ascent to viral stardom and the steep downward spiral that resulted in his imprisonment.
              50Black Knight: Season 1 // 택배기사: 시즌 1Yes2023-04-1384600000496.8Comedyperformer -fisherman -song -life -managerA quirky - dysfunctional family's road trip is upended when they find themselves in the middle of the robot apocalypse and suddenly become humanity's unlikeliest last hope.
              51Breaking Bad: Season 4No2017-07-2384400000118698.4Shortperformer -fisherman -song -life -managerDeep in the Dovre mountain - something gigantic wakes up after a thousand years in captivity. The creature destroys everything in its path and quickly approaches Oslo.
              52Obsession: Limited SeriesYes2023-01-208360000089536.8Adventure - Biography - Dramaeducational film -world war two -enemy -japanese soldier -training filmComedian Chris Rock performs a live stand -up special in Baltimore - Maryland.
              53Who Were We Running From?: Limited Series // Biz Kimden Kaçıyorduk Anne?: Mini DiziYes2023-04-1483200000111884.8Drama - Thrillerheist -robbery -spain -mint -professorAfter finding out their babies were switched at birth - two women develop a plan to adjust to their new lives creating a single and very peculiar family.
              54Hunger // คนหิว เกมกระหายYes2021-10-14825000002379.3Documentary - Shortjournalist -teacherWhat if everything we know about prehistory is wrong? Journalist Graham Hancock visits archaeological sites around the world investigating if a civilization far more advanced than we ever believed possible existed thousands of yea...
              55Alice in Borderland: Season 1 // 今際の国のアリス: シーズン1Yes2022-12-1582100000118698.4Shortanglo saxon -kingdom -exploration -warrior -epicFramed for a corporate crime - an adult Ted Templeton turns back into the Boss Baby to live undercover with his brother - Tim - posing as one of his kids.
              56CoComelon: Season 3No2021-08-218170000010927.8Dramasequel -second part -wattpad -love -windowSpinoff of Bling Empire (2021) series. Follows a group of humorous - sophisticated and rich Asian -Americans from New York City.
              57Firefly Lane: Season 1Yes2022-12-2581000000875.7Short - Comedy - Musicallove -singer -heart -two word title -color in titleA travelling monk and his followers find themselves trapped in a land inhabited by only women.
              58S.W.A.T. (2017): Season 1No2022-12-3078200000331796.9Action - Drama - Historyplot twist -criminal -smartphone -worker -cell phoneFood competition that follows the country's best backyard smokers and competitive barbecuers as they compete for the title of American Barbecue Champion.
              59Murder MysteryYes2023-01-2678200000368.5Animation - Action - Adventureplot twist -criminal -smartphone -worker -cell phoneRaquel's longtime crush on her next -door neighbor turns into something more when he starts developing feelings for her - despite his family's objections.
              60True Beauty // 여신강림No2023-04-07778000003265.7Comedy - Dramaactress -love -reference to pamela anderson -personal -careerWhen a psychiatrist shelters a mysterious cult escapee - her world is turned upside down as the girl's arrival threatens to tear her own family apart.
              61Squid Game: Season 1 // 오징어 게임: 시즌 1Yes2016-07-1577800000167064.7Action - Comedy - Dramaairplane -heist -diamond -accident -planeThis Sportscope short features the sport of kayaking. Participants ride river rapids and show their skill as they maneuver through special 'water slalom' courses.
              62Little Angel: Volume 2Yes2022-11-0976300000167084.7Action - Comedy - Dramaanthology -midnight -horrific -horrifying -sinisterHospital Playlist tells the story of five doctors who have been friends since they entered medical school in 1999.
              63Manifest: Season 2No2023-03-03757000006201439Crime - Dramalawyer -spin off -psychosomatic illness -criminal lawyer -drug tradeWhen a stay -at -home dad who dedicates all his time to his children is persuaded to take time off for himself - he gets mixed up in the wild shenanigans of his childhood friend who's celebrating his 44th birthday.
              64ExtractionYes2020-08-2175200000118698.4Shortanglo saxon -kingdom -exploration -warrior -epicThe Seven Deadly Sins travel to the Sky Temple in search of an elusive ingredient.
              65Lucifer: Season 1No2021-01-05716000003656.3Animation - Short - Horrordonghua -chinese animation -chinese anime -team sports -basketballMatchmaker Sima Taparia guides clients in the U.S. and India in the arranged marriage process - offering an inside look at the custom in a modern era.
              66The Last Kingdom: Seven Kings Must DieYes2023-03-046950000054005.8Thrilleryacht -the future -ensemble cast -italy -florence italyAfter the death of their father - two half -brothers find themselves on opposite sides of an escalating conflict with tragic consequences.
              67CoComelon: Season 4No2021-08-28690000002505327.3Crime - Drama - Mysterysnake -crocodile -spider -koala -animalAfter accidentally crash -landing in 2022 - time -traveling fighter pilot Adam Reed teams up with his 12 -year -old self for a mission to save the future.
              68Sam & Cat: Season 1No2023-03-316850000091097Adventure - Comedy - Familyrobot -road trip -dog -furby -family road tripA policeman and his doctor wife have some marriage problems and the son blames the mother. For his job - the policeman investigates a case of a missing boy. The possible kidnapping looks like some cases from a few years ago.
              69Gilmore Girls: Season 1Yes2021-11-126810000052866.5Animation - Adventure - Comedyolder woman younger man sex -deep cleavage -large breasts -female topless nudity -cuckolded husbandA live -action adaptation of Nickelodeon's Winx Club (2004). It follows Bloom as she adjusts to life in the Otherworld - where she must learn to control her dangerous magical powers.
              70Sonic Prime: Season 1Yes2021-11-176780000062827.5Documentary - Crime - Historyfather daughter relationship -mountain -oslo norway -folklore -mythological creatureAn astronaut's return after a 30 -year disappearance rekindles a lost love and sparks interest from a corporation determined to learn why he hasn't aged.
              71Manifest: Season 3No2017-09-2867200000102065.5Action - Adventure - Dramamotherhood -switched at birth -female female kiss -female nudity -female friendsWhen an army of powerful alien beings is unleashed on Earth threatening life as we know it - a brand -new team of Power Rangers - fueled by the prehistoric power of the dinosaurs - are recruited to deal with the threat.
              72Roald Dahls Matilda The MusicalYesNULL67000000343275.9Action - Comedy - Dramacardboard cutout -watching tv -watching oneself on tv -boxer -boxingThe world's deadliest assassin and New York's biggest screw -up are mistaken for each other at an Airbnb rental.
              73Sing (2016)No2022-12-136590000023968.5Comedy - Dramaworld -civilizationFrom war -torn Syria to the 2016 Rio Olympics - two young sisters embark on a harrowing journey as refugees - putting both their hearts and champion swimming skills to heroic use.
              74Hajime no Ippo: The Fighting!: Season 1 // はじめの一歩: シーズン1No2022-12-2565300000148.4Animation - Drama - Sportsequel -sequel to tv series -based on film -baby -bossFrom war -torn Syria to the 2016 Rio Olympics - two young sisters embark on a harrowing journey as refugees - putting both their hearts and champion swimming skills to heroic use.
              75Sky High: The Series: Season 1 // Hasta el cielo: La serie: Season 1Yes2022-10-136440000066766.4Drama - Music - Romancemonk -journey to the west -sun wukong the monkey king character -3d -3 dimensionalA propaganda film - made in the early months of World War II - dramatizing a new group of U.S. Army Air Force pilots receiving their wings from Lt. General H.H. Arnold: on off -screen narrator introduces four of them to us - we see th...
              76Record of Ragnarok: Season 2 // 終末のワルキューレ: シーズン2No2022-09-2163500000265.9Short - Documentaryrepeat sequel -question mark in title -returning character killed off -writer director -sequelKyra Berry - a 14 year old USA gymnast arrives in Australia to try and win a scholarship at an elite Gymnastics Academy. It's a second chance but also her last.
              77Paw Patrol: The MovieNo2022-12-08620000003516.5DramarevengeIvan Locke - a dedicated family man and successful construction manager - receives a phone call on the eve of the biggest challenge of his career that sets in motion a series of events that threaten his carefully cultivated existence.
              78Next in Fashion: Season 2Yes2021-10-0161500000118698.4Shortwattpad -love -young -teenage girl -teenage boyAfter the murder of his parents when he was a little kid - Mexican Miguel Garza is sent away to Japan. 20 years later - he has to go back to his home country as the new heir of his family's cartel.
              79Gilmore Girls: Season 2Yes2014-09-3061100000288.1Shortcult -psychiatrist -tv mini series -devil -location in titleAfter her mother disappears - Clary must venture into the dark world of demon hunting - and embrace her new role among the Shadowhunters.
              80Treason: Limited SeriesYes2023-02-1560600000484356.7Drama - Music - Romancedoctor -medical -friendship -colleagues -workAfter moving his family into his childhood home - a man's investigation into a local factory accident connected to his father unveils dark family secrets.
              81TrollsNo2023-03-2960100000331796.9Action - Drama - Historymale nudity -male star appears nude -father -life -friendAfter moving his family into his childhood home - a man's investigation into a local factory accident connected to his father unveils dark family secrets.
              82Blood Ties: Season 1 // Las Villamizar: Season 1No2015-08-285990000071467Documentary - Crimebased on manga -based on anime -holy knight -based on tv series -based on anime seriesThe Seven Deadly Sins travel to the Sky Temple in search of an elusive ingredient.
              83Money Heist: Part 1 // La casa de papel: Parte 1Yes2023-01-045960000016486.6Adventure - Comedy - Dramaboat -village -fishing -yorkshire england -lifeboatA look at the 2001 Seattle Mariners who tied Major League Baseballs modern day record for most wins in a season with 116.
              84Rough Diamonds: Season 1Yes2021-12-17593000006847.6Documentary - Shortspongebob squarepants character -sequel -king -kidnapping -friendshipThis RKO -Pathe short film promotes the need for cooperation and neighborliness in the event of a nuclear disaster and associated civil defense procedures. After preaching the power of modern (for 1956) atomic weapons - civil defens...
              85The Walking Dead: Season 10No2022-08-125830000090116.4Crime - Drama - Mysteryottoman empire -christian -constantinople turkey -medieval times -1400sAn unhappily married aristocrat begins a torrid affair with the gamekeeper on her husband's country estate.
              86The Witcher: Season 1Yes2022-07-2258300000122557.2Documentary - Biographycinepanettone -politician -ancient romeTwo inseparable friends move to Kyoto to chase their dreams of becoming maiko - but decide to pursue different passions while living under the same roof.
              87The Walking Dead: Season 3No2022-08-055670000078.7Animation - Comedy -  SciFidetective -runaway -fight -teenager -teenage girlA storm rages. A young girl is kidnapped. Her mother teams up with the mysterious woman next door to pursue the kidnapper - a journey that tests their limits and exposes shocking secrets from their pasts.
              88Gilmore Girls: Season 3Yes2022-03-31566000006201439Crime - Dramaheist -robbery -spain -mint -professorA young girl discovers a secret map to the dreamworld of Slumberland - and with the help of an eccentric outlaw - she traverses dreams and flees nightmares - with the hope that she will be able to see her late father again.
              89Red Rose: Season 1Yes2023-02-2256500000331796.9Action - Drama - Historylove -life -airport -flight -coupleGirl Luba had a dream. She - the daughter of a chess king in a fairyland - became the victim of a cunning political conspiracy of two cards  - the Peak Jack Krivello and the Cross Dame Dvuliche.
              90Gilmore Girls: Season 5Yes2023-02-14552000008107.1Documentary - Crimebased on series of novels -based on tv series -innocent cop framed -ex cop -police corruptionA live -action adaptation of Nickelodeon's Winx Club (2004). It follows Bloom as she adjusts to life in the Otherworld - where she must learn to control her dangerous magical powers.
              91Stranger Things 2Yes2023-05-2453800000646.6Short - Sportdigoxin -mercy -murder of wife -old woman -hospitalWith a little help from his brother and accomplice - Tim - Boss Baby tries to balance family life with his job at Baby Corp headquarters.
              92Red NoticeYes2022-05-0653000000357.6Short - Comedydinosaur adventure -superhero -superhero team -morphing -villainA young man is magically turned a merman - and discovers his underwater origins - after he comes in contact with the magic waters at the mysterious Mako Island guarded by a trio of mermaids.
              93Henry Danger: Season 1No2020-12-25528000002379.3Documentary - Shortmistaken identity -buddy comedy -toronto ontario canada -evil woman -final showdownA family of former child heroes - now grown apart - must reunite to continue to protect the world.
              94The Queen of Flow: Season 2 // La reina del flow: Temporada 2No2020-12-25528000008874.6Action - Comedynonlinear timeline -criminal as protagonist -killer as protagonist -gangster -truck driverSawako Kuronuma is misunderstood due to her resemblance to the ghost girl from The Ring. But one day the nicest boy in the class - Kazehaya befriends her and everything changed after that and also everyone perspective of Sawako but...
              95The Walking Dead: Season 2No2023-06-0752500000569.3Talk -Showboy -city -career -boat -olympianAfter failing to find success on Broadway - April returns to her hometown and reluctantly is recruited to train a misfit group of young dancers for a big competition.
              96Designated Survivor: Season 2Yes2021-10-11524000001037.3Short - Drama - Thrillerspaceship -robot -alien -sabotage -scientistIt follows singles in the US and Israel as they turn their dating life over to a top Jewish matchmaker.
              97Bebefinn: Season 1Yes2023-05-1052200000569.3Talk -Showpatriotism -military pilot -u.s. military -propaganda -u.s. army air corpsA team of rapid -fire renovators takes big risks and makes painstaking plans to transform families' homes from top to bottom in just 12 hours.
              98Hotel Transylvania 2No2018-10-2452000000474695.8Action - Adventure - Dramanon fictionTwo meddling grannies trick their adult grandkids into a meet -cute that reignites a childhood crush and old grudges.
              99Stranger Things 3Yes2022-11-1751800000111146.8Comedyprequel -zombie -safe -apocalypse -heistA high school student is forced to confront her secret crush at a kissing booth.
              100Outlander: Season 1No2020-06-20518000002379.3Documentary - Shortbased on film -spin off -gymnastic -athlete -eliteI AM NO ONE is a documentary film written - directed - and edited by Jason Hoover about a man named Charles Lake who moonlights as a serial killer in Chicago - IL.
              ×
              INFO  : Compiling command(queryId=hive_20240327071726_ff01dd9a-b070-4c6c-8baf-9fe7d64d4e06): -- Drop for retesting purposes
              DROP TABLE student.netflix2023
              INFO  : Semantic Analysis Completed
              INFO  : Returning Hive schema: Schema(fieldSchemas:null, properties:null)
              INFO  : Completed compiling command(queryId=hive_20240327071726_ff01dd9a-b070-4c6c-8baf-9fe7d64d4e06); Time taken: 0.005 seconds
              INFO  : Concurrency mode is disabled, not creating a lock manager
              INFO  : Executing command(queryId=hive_20240327071726_ff01dd9a-b070-4c6c-8baf-9fe7d64d4e06): -- Drop for retesting purposes
              DROP TABLE student.netflix2023
              INFO  : Starting task [Stage-0:DDL] in serial mode
              INFO  : Completed executing command(queryId=hive_20240327071726_ff01dd9a-b070-4c6c-8baf-9fe7d64d4e06); Time taken: 0.025 seconds
              INFO  : OK
               Success.

              My Snippet

              -- TEXT CLEANUP
              /* Finally, create a cleanedup version optimized for later analysis
              Text Cleanup: cleaned up keywords and description a bit.
              Removed rows with invalid dates */
              CREATE TABLE student.netflix2023 AS
              SELECT
              title,
              availableglobally,
              TO_DATE(releasedate) AS `releasedate`,
              hoursviewed,
              numberofratings,
              rating,
              genre,
              REPLACE(keywords, ' -', ', ') as keywords,
              REPLACE(REPLACE(REPLACE(description, ' - ', ', '), ' -', '-'), ''', '\'') as description
              FROM
              corrected_netflix2023
              WHERE
              TO_DATE(releasedate) LIKE "20%" -- Necessary, as will be seen later
              XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                ×
                INFO  : Compiling command(queryId=hive_20240327071731_bd8949f7-938e-4ef8-b2ec-8e644a2928e1): -- TEXT CLEANUP
                /* Finally, create a cleanedup version optimized for later analysis
                Text Cleanup: cleaned up keywords and description a bit.
                Removed rows with invalid dates */
                CREATE TABLE student.netflix2023 AS
                SELECT
                    title,
                    availableglobally,
                    TO_DATE(releasedate) AS `releasedate`,
                    hoursviewed,
                    numberofratings,
                    rating,
                    genre,
                    REPLACE(keywords, ' -', ', ') as keywords,  
                    REPLACE(REPLACE(REPLACE(description, ' - ', ', '), ' -', '-'), ''', '\'') as description
                FROM
                    corrected_netflix2023
                WHERE
                    TO_DATE(releasedate) LIKE "20%" -- Necessary, as can be seen later
                INFO  : Semantic Analysis Completed
                INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:title, type:string, comment:null), FieldSchema(name:availableglobally, type:string, comment:null), FieldSchema(name:releasedate, type:date, comment:null), FieldSchema(name:hoursviewed, type:bigint, comment:null), FieldSchema(name:numberofratings, type:bigint, comment:null), FieldSchema(name:rating, type:double, comment:null), FieldSchema(name:genre, type:string, comment:null), FieldSchema(name:keywords, type:string, comment:null), FieldSchema(name:description, type:string, comment:null)], properties:null)
                INFO  : Completed compiling command(queryId=hive_20240327071731_bd8949f7-938e-4ef8-b2ec-8e644a2928e1); Time taken: 0.048 seconds
                INFO  : Concurrency mode is disabled, not creating a lock manager
                INFO  : Executing command(queryId=hive_20240327071731_bd8949f7-938e-4ef8-b2ec-8e644a2928e1): -- TEXT CLEANUP
                /* Finally, create a cleanedup version optimized for later analysis
                Text Cleanup: cleaned up keywords and description a bit.
                Removed rows with invalid dates */
                CREATE TABLE student.netflix2023 AS
                SELECT
                    title,
                    availableglobally,
                    TO_DATE(releasedate) AS `releasedate`,
                    hoursviewed,
                    numberofratings,
                    rating,
                    genre,
                    REPLACE(keywords, ' -', ', ') as keywords,  
                    REPLACE(REPLACE(REPLACE(description, ' - ', ', '), ' -', '-'), ''', '\'') as description
                FROM
                    corrected_netflix2023
                WHERE
                    TO_DATE(releasedate) LIKE "20%" -- Necessary, as can be seen later
                INFO  : Query ID = hive_20240327071731_bd8949f7-938e-4ef8-b2ec-8e644a2928e1
                INFO  : Total jobs = 1
                INFO  : Launching Job 1 out of 1
                INFO  : Starting task [Stage-1:MAPRED] in serial mode
                INFO  : Session is already open
                INFO  : Dag name: -- TEXT CLEANUP
                /* Finally, create a...later(Stage-1)
                INFO  : Setting tez.task.scale.memory.reserve-fraction to 0.30000001192092896
                INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                
                INFO  : Map 1: 0/1	Map 2: 0/1
                INFO  : Map 1: 0/1	Map 2: 0(+1)/1
                INFO  : Map 1: 0(+1)/1	Map 2: 0(+1)/1	
                INFO  : Map 1: 0(+1)/1	Map 2: 1/1
                INFO  : Map 1: 0(+1)/1	Map 2: 1/1	
                INFO  : Map 1: 1/1	Map 2: 1/1	
                INFO  : Starting task [Stage-2:DEPENDENCY_COLLECTION] in serial mode
                INFO  : Starting task [Stage-0:MOVE] in serial mode
                INFO  : Moving data to directory hdfs://ip-172-31-2-172.us-west-1.compute.internal:8020/user/hive/warehouse/student.db/netflix2023 from hdfs://ip-172-31-2-172.us-west-1.compute.internal:8020/user/hive/warehouse/student.db/.hive-staging_hive_2024-03-27_07-17-31_639_2411937544670865735-4/-ext-10002
                INFO  : Starting task [Stage-4:DDL] in serial mode
                INFO  : Starting task [Stage-3:STATS] in serial mode
                INFO  : Completed executing command(queryId=hive_20240327071731_bd8949f7-938e-4ef8-b2ec-8e644a2928e1); Time taken: 8.02 seconds
                INFO  : OK
                 Success.
                ×
                INFO  : Compiling command(queryId=hive_20240327071748_2df8f11c-6223-4d28-badd-c25fc64310ea): -- COLUMN DATA TYPES
                DESCRIBE student.netflix2023
                INFO  : Semantic Analysis Completed
                INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:col_name, type:string, comment:from deserializer), FieldSchema(name:data_type, type:string, comment:from deserializer), FieldSchema(name:comment, type:string, comment:from deserializer)], properties:null)
                INFO  : Completed compiling command(queryId=hive_20240327071748_2df8f11c-6223-4d28-badd-c25fc64310ea); Time taken: 0.005 seconds
                INFO  : Concurrency mode is disabled, not creating a lock manager
                INFO  : Executing command(queryId=hive_20240327071748_2df8f11c-6223-4d28-badd-c25fc64310ea): -- COLUMN DATA TYPES
                DESCRIBE student.netflix2023
                INFO  : Starting task [Stage-0:DDL] in serial mode
                INFO  : Completed executing command(queryId=hive_20240327071748_2df8f11c-6223-4d28-badd-c25fc64310ea); Time taken: 0.004 seconds
                INFO  : OK
                  col_name data_type comment
                  col_name data_type comment
                1titlestring
                2availablegloballystring
                3releasedatedate
                4hoursviewedbigint
                5numberofratingsbigint
                6ratingdouble
                7genrestring
                8keywordsstring
                9descriptionstring

                My Snippet

                -- INSPECT NULL COUNT
                -- Count null values and account for later if/when necessary
                SELECT
                SUM(CASE WHEN title IS NULL THEN 1 ELSE 0 END) AS null_titles,
                SUM(CASE WHEN availableglobally IS NULL THEN 1 ELSE 0 END) AS null_availableglobally,
                SUM(CASE WHEN releasedate IS NULL THEN 1 ELSE 0 END) AS null_releasedate,
                SUM(CASE WHEN hoursviewed IS NULL THEN 1 ELSE 0 END) AS null_hoursviewed,
                SUM(CASE WHEN numberofratings IS NULL THEN 1 ELSE 0 END) AS null_numberofratings,
                SUM(CASE WHEN rating IS NULL THEN 1 ELSE 0 END) AS null_rating,
                SUM(CASE WHEN genre IS NULL THEN 1 ELSE 0 END) AS null_genre,
                SUM(CASE WHEN keywords IS NULL THEN 1 ELSE 0 END) AS null_keywords,
                SUM(CASE WHEN description IS NULL THEN 1 ELSE 0 END) AS null_description
                FROM
                student.netflix2023;
                XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                  ×
                  INFO  : Compiling command(queryId=hive_20240327070839_862025f3-1df5-42ba-ba8c-fa9d18567330): -- INSPECT NULL COUNT
                  -- Count null values and account for later if/when necessary
                  SELECT
                    SUM(CASE WHEN title IS NULL THEN 1 ELSE 0 END) AS null_titles,
                    SUM(CASE WHEN availableglobally IS NULL THEN 1 ELSE 0 END) AS null_availableglobally,
                    SUM(CASE WHEN releasedate IS NULL THEN 1 ELSE 0 END) AS null_releasedate,
                    SUM(CASE WHEN hoursviewed IS NULL THEN 1 ELSE 0 END) AS null_hoursviewed,
                    SUM(CASE WHEN numberofratings IS NULL THEN 1 ELSE 0 END) AS null_numberofratings,
                    SUM(CASE WHEN rating IS NULL THEN 1 ELSE 0 END) AS null_rating,
                    SUM(CASE WHEN genre IS NULL THEN 1 ELSE 0 END) AS null_genre,
                    SUM(CASE WHEN keywords IS NULL THEN 1 ELSE 0 END) AS null_keywords,
                    SUM(CASE WHEN description IS NULL THEN 1 ELSE 0 END) AS null_description
                  FROM
                    student.netflix2023
                  INFO  : Semantic Analysis Completed
                  INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:null_titles, type:bigint, comment:null), FieldSchema(name:null_availableglobally, type:bigint, comment:null), FieldSchema(name:null_releasedate, type:bigint, comment:null), FieldSchema(name:null_hoursviewed, type:bigint, comment:null), FieldSchema(name:null_numberofratings, type:bigint, comment:null), FieldSchema(name:null_rating, type:bigint, comment:null), FieldSchema(name:null_genre, type:bigint, comment:null), FieldSchema(name:null_keywords, type:bigint, comment:null), FieldSchema(name:null_description, type:bigint, comment:null)], properties:null)
                  INFO  : Completed compiling command(queryId=hive_20240327070839_862025f3-1df5-42ba-ba8c-fa9d18567330); Time taken: 0.054 seconds
                  INFO  : Concurrency mode is disabled, not creating a lock manager
                  INFO  : Executing command(queryId=hive_20240327070839_862025f3-1df5-42ba-ba8c-fa9d18567330): -- INSPECT NULL COUNT
                  -- Count null values and account for later if/when necessary
                  SELECT
                    SUM(CASE WHEN title IS NULL THEN 1 ELSE 0 END) AS null_titles,
                    SUM(CASE WHEN availableglobally IS NULL THEN 1 ELSE 0 END) AS null_availableglobally,
                    SUM(CASE WHEN releasedate IS NULL THEN 1 ELSE 0 END) AS null_releasedate,
                    SUM(CASE WHEN hoursviewed IS NULL THEN 1 ELSE 0 END) AS null_hoursviewed,
                    SUM(CASE WHEN numberofratings IS NULL THEN 1 ELSE 0 END) AS null_numberofratings,
                    SUM(CASE WHEN rating IS NULL THEN 1 ELSE 0 END) AS null_rating,
                    SUM(CASE WHEN genre IS NULL THEN 1 ELSE 0 END) AS null_genre,
                    SUM(CASE WHEN keywords IS NULL THEN 1 ELSE 0 END) AS null_keywords,
                    SUM(CASE WHEN description IS NULL THEN 1 ELSE 0 END) AS null_description
                  FROM
                    student.netflix2023
                  INFO  : Query ID = hive_20240327070839_862025f3-1df5-42ba-ba8c-fa9d18567330
                  INFO  : Total jobs = 1
                  INFO  : Launching Job 1 out of 1
                  INFO  : Starting task [Stage-1:MAPRED] in serial mode
                  INFO  : Session is already open
                  INFO  : Dag name: -- INSPECT NULL COUNT
                  ...student.netflix2023(Stage-1)
                  INFO  : Tez session was closed. Reopening...
                  INFO  : Session re-established.
                  INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                  
                  INFO  : Map 1: 0/1	Reducer 2: 0/1
                  INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1
                  INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	
                  INFO  : Map 1: 1/1	Reducer 2: 1/1	
                  INFO  : Completed executing command(queryId=hive_20240327070839_862025f3-1df5-42ba-ba8c-fa9d18567330); Time taken: 9.718 seconds
                  INFO  : OK
                  columns (10)
                  int
                  null_titles bigint
                  null_availableglobally bigint
                  null_releasedate bigint
                  null_hoursviewed bigint
                  null_numberofratings bigint
                  null_rating bigint
                  null_genre bigint
                  null_keywords bigint
                  null_description bigint
                    null_titles null_availableglobally null_releasedate null_hoursviewed null_numberofratings null_rating null_genre null_keywords null_description
                    null_titles null_availableglobally null_releasedate null_hoursviewed null_numberofratings null_rating null_genre null_keywords null_description
                  1000044000

                  My Snippet

                  -- Drop for retesting purposes
                  DROP VIEW student.netflix2023_genre_exploded;
                  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                    ×
                    INFO  : Compiling command(queryId=hive_20240327070854_9e6cb954-2820-4b19-89e3-eed2e5f7beb7): -- Drop for retesting purposes
                    DROP VIEW student.netflix2023_genre_exploded
                    INFO  : Semantic Analysis Completed
                    INFO  : Returning Hive schema: Schema(fieldSchemas:null, properties:null)
                    INFO  : Completed compiling command(queryId=hive_20240327070854_9e6cb954-2820-4b19-89e3-eed2e5f7beb7); Time taken: 0.003 seconds
                    INFO  : Concurrency mode is disabled, not creating a lock manager
                    INFO  : Executing command(queryId=hive_20240327070854_9e6cb954-2820-4b19-89e3-eed2e5f7beb7): -- Drop for retesting purposes
                    DROP VIEW student.netflix2023_genre_exploded
                    INFO  : Starting task [Stage-0:DDL] in serial mode
                    INFO  : Completed executing command(queryId=hive_20240327070854_9e6cb954-2820-4b19-89e3-eed2e5f7beb7); Time taken: 0.017 seconds
                    INFO  : OK
                     Success.

                    My Snippet

                    -- Create separate view of netflix2023 where genre is exploded into multiple rows
                    CREATE VIEW student.netflix2023_genre_exploded AS
                    SELECT
                    title,
                    availableglobally,
                    releasedate,
                    hoursviewed,
                    numberofratings,
                    rating,
                    REPLACE(genre_exploded, ' -', '-') AS genre,
                    keywords,
                    description
                    FROM
                    student.netflix2023
                    LATERAL VIEW
                    EXPLODE(SPLIT(genre, ' - ')) exploded_table AS genre_exploded
                    WHERE
                    genre_exploded <> 'Genre'
                    AND genre_exploded <> 'TBD';
                    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                      ×
                      INFO  : Compiling command(queryId=hive_20240327070859_5d232a78-16f6-4882-92d5-e885e9907c54): -- Create separate view of netflix2023 where genre is exploded into multiple rows
                      CREATE VIEW student.netflix2023_genre_exploded AS
                      SELECT
                          title,
                          availableglobally,
                          releasedate,
                          hoursviewed,
                          numberofratings,
                          rating,
                          REPLACE(genre_exploded, ' -', '-') AS genre,
                          keywords,
                          description
                      FROM
                          student.netflix2023
                      LATERAL VIEW
                          EXPLODE(SPLIT(genre, ' - ')) exploded_table AS genre_exploded
                      WHERE
                          genre_exploded <> 'Genre'
                          AND genre_exploded <> 'TBD'
                      INFO  : Semantic Analysis Completed
                      INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:title, type:string, comment:null), FieldSchema(name:availableglobally, type:string, comment:null), FieldSchema(name:releasedate, type:date, comment:null), FieldSchema(name:hoursviewed, type:bigint, comment:null), FieldSchema(name:numberofratings, type:bigint, comment:null), FieldSchema(name:rating, type:double, comment:null), FieldSchema(name:genre, type:string, comment:null), FieldSchema(name:keywords, type:string, comment:null), FieldSchema(name:description, type:string, comment:null)], properties:null)
                      INFO  : Completed compiling command(queryId=hive_20240327070859_5d232a78-16f6-4882-92d5-e885e9907c54); Time taken: 0.014 seconds
                      INFO  : Concurrency mode is disabled, not creating a lock manager
                      INFO  : Executing command(queryId=hive_20240327070859_5d232a78-16f6-4882-92d5-e885e9907c54): -- Create separate view of netflix2023 where genre is exploded into multiple rows
                      CREATE VIEW student.netflix2023_genre_exploded AS
                      SELECT
                          title,
                          availableglobally,
                          releasedate,
                          hoursviewed,
                          numberofratings,
                          rating,
                          REPLACE(genre_exploded, ' -', '-') AS genre,
                          keywords,
                          description
                      FROM
                          student.netflix2023
                      LATERAL VIEW
                          EXPLODE(SPLIT(genre, ' - ')) exploded_table AS genre_exploded
                      WHERE
                          genre_exploded <> 'Genre'
                          AND genre_exploded <> 'TBD'
                      INFO  : Starting task [Stage-0:DDL] in serial mode
                      INFO  : Completed executing command(queryId=hive_20240327070859_5d232a78-16f6-4882-92d5-e885e9907c54); Time taken: 0.01 seconds
                      INFO  : OK
                       Success.

                      My Snippet

                      -- Ensure genre exploded table was made correctly
                      SELECT * FROM student.netflix2023_genre_exploded
                      XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                        ×
                        INFO  : Compiling command(queryId=hive_20240327070922_effaba5f-c2c2-4c20-b6f3-4079d1646b20): -- Ensure genre exploded table was made correctly
                        SELECT * FROM student.netflix2023_genre_exploded
                        INFO  : Semantic Analysis Completed
                        INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:netflix2023_genre_exploded.title, type:string, comment:null), FieldSchema(name:netflix2023_genre_exploded.availableglobally, type:string, comment:null), FieldSchema(name:netflix2023_genre_exploded.releasedate, type:date, comment:null), FieldSchema(name:netflix2023_genre_exploded.hoursviewed, type:bigint, comment:null), FieldSchema(name:netflix2023_genre_exploded.numberofratings, type:bigint, comment:null), FieldSchema(name:netflix2023_genre_exploded.rating, type:double, comment:null), FieldSchema(name:netflix2023_genre_exploded.genre, type:string, comment:null), FieldSchema(name:netflix2023_genre_exploded.keywords, type:string, comment:null), FieldSchema(name:netflix2023_genre_exploded.description, type:string, comment:null)], properties:null)
                        INFO  : Completed compiling command(queryId=hive_20240327070922_effaba5f-c2c2-4c20-b6f3-4079d1646b20); Time taken: 0.03 seconds
                        INFO  : Concurrency mode is disabled, not creating a lock manager
                        INFO  : Executing command(queryId=hive_20240327070922_effaba5f-c2c2-4c20-b6f3-4079d1646b20): -- Ensure genre exploded table was made correctly
                        SELECT * FROM student.netflix2023_genre_exploded
                        INFO  : Completed executing command(queryId=hive_20240327070922_effaba5f-c2c2-4c20-b6f3-4079d1646b20); Time taken: 0.0 seconds
                        INFO  : OK
                          netflix2023_genre_exploded.title netflix2023_genre_exploded.availableglobally netflix2023_genre_exploded.releasedate netflix2023_genre_exploded.hoursviewed netflix2023_genre_exploded.numberofratings netflix2023_genre_exploded.rating netflix2023_genre_exploded.genre netflix2023_genre_exploded.keywords netflix2023_genre_exploded.description
                          netflix2023_genre_exploded.title netflix2023_genre_exploded.availableglobally netflix2023_genre_exploded.releasedate netflix2023_genre_exploded.hoursviewed netflix2023_genre_exploded.numberofratings netflix2023_genre_exploded.rating netflix2023_genre_exploded.genre netflix2023_genre_exploded.keywords netflix2023_genre_exploded.description
                        1Queen Charlotte: A Bridgerton StoryYes2023-05-04503000000456246.6Comedytelenovela, drug trafficking, cartel, femme fatale, kidnappingWhile fleeing from dangerous assailants, an assassin comes out of hiding to protect the daughter she left earlier in life.
                        2Queen Charlotte: A Bridgerton StoryYes2023-05-04503000000456246.6Romancetelenovela, drug trafficking, cartel, femme fatale, kidnappingWhile fleeing from dangerous assailants, an assassin comes out of hiding to protect the daughter she left earlier in life.
                        3Ginny & Georgia: Season 1Yes2021-02-24302100000441025.6Actionclose up of eye, close up of eyes, close up of lips, close up of mouth, childAfter barely surviving his grievous wounds from his mission in Dhaka, Bangladesh, Tyler Rake is back, and his team is ready to take on their next mission.
                        4Ginny & Georgia: Season 1Yes2021-02-24302100000441025.6Thrillerclose up of eye, close up of eyes, close up of lips, close up of mouth, childAfter barely surviving his grievous wounds from his mission in Dhaka, Bangladesh, Tyler Rake is back, and his team is ready to take on their next mission.
                        5The MotherYes2023-05-1224990000068.6Sportracial tension, black american, couple, love, lifeA young American woman from the Midwest is hired by a marketing firm in Paris to provide them with an American perspective on things.
                        6The Diplomat: Season 1Yes2023-04-20214100000608535.5Comedyfriend, best friend, volunteer, teenager, sonVillain's kidnap a man's daughter in order to get hold of forgery plates which they believe to be in his possession.
                        7The Diplomat: Season 1Yes2023-04-20214100000608535.5Romancefriend, best friend, volunteer, teenager, sonVillain's kidnap a man's daughter in order to get hold of forgery plates which they believe to be in his possession.
                        8Luther: The Fallen SunYes2023-03-102097000003007.3Romancefemale protagonist, character name in series title, american in france, location in series title, marketingFinding a ghost named Ernest haunting their new home turns Kevin's family into overnight social media sensations. But when Kevin and Ernest investigate the mystery of Ernest's past, they become a target of the CIA.
                        9Fake Profile: Season 1 // Perfil falso: Temporada 1No2023-05-3120650000081658.7Dramaalice character, caterpillar character, the mad hatter character, march hare character, dormouse characterA world-weary detective is hired to investigate the murder of a West Point cadet. Stymied by the cadets' code of silence, he enlists one of their own to help unravel the case , a young man the world would come to know as Edgar All...
                        10Fake Profile: Season 1 // Perfil falso: Temporada 1No2023-05-3120650000081658.7Horroralice character, caterpillar character, the mad hatter character, march hare character, dormouse characterA world-weary detective is hired to investigate the murder of a West Point cadet. Stymied by the cadets' code of silence, he enlists one of their own to help unravel the case , a young man the world would come to know as Edgar All...
                        11Fake Profile: Season 1 // Perfil falso: Temporada 1No2023-05-3120650000081658.7Thrilleralice character, caterpillar character, the mad hatter character, march hare character, dormouse characterA world-weary detective is hired to investigate the murder of a West Point cadet. Stymied by the cadets' code of silence, he enlists one of their own to help unravel the case , a young man the world would come to know as Edgar All...
                        12Outer Banks: Season 1Yes2020-04-151840000001192466.2Adventurebritish noir, b movie, forgery plates, kidnapping a girl, rape and sexual intercourse innuendoThe last of a two-part film centered on the life and career of John Reed, the revolutionary communist journalist.
                        13Outer Banks: Season 1Yes2020-04-151840000001192466.2Familybritish noir, b movie, forgery plates, kidnapping a girl, rape and sexual intercourse innuendoThe last of a two-part film centered on the life and career of John Reed, the revolutionary communist journalist.
                        14Outer Banks: Season 1Yes2020-04-151840000001192466.2Fantasybritish noir, b movie, forgery plates, kidnapping a girl, rape and sexual intercourse innuendoThe last of a two-part film centered on the life and career of John Reed, the revolutionary communist journalist.
                        15Sweet Tooth: Season 2Yes2023-04-27182300000744037.5Actionghost, house, chase, car chase, based on short storyTeresa Mendoza returns to Mexico after 8 years to fight with Mexican drug dealers.
                        16Sweet Tooth: Season 2Yes2023-04-27182300000744037.5Crimeghost, house, chase, car chase, based on short storyTeresa Mendoza returns to Mexico after 8 years to fight with Mexican drug dealers.
                        17Sweet Tooth: Season 2Yes2023-04-27182300000744037.5Dramaghost, house, chase, car chase, based on short storyTeresa Mendoza returns to Mexico after 8 years to fight with Mexican drug dealers.
                        18Perfect Match: Season 1Yes2023-02-141768000003446Adventuremurder, year 1830, 1830s, 19th century, winterHiding a mysterious past, a mother lives like a nameless fugitive with her daughter as they make hotels their home and see everyone else as a threat.
                        19Perfect Match: Season 1Yes2023-02-141768000003446Comedymurder, year 1830, 1830s, 19th century, winterHiding a mysterious past, a mother lives like a nameless fugitive with her daughter as they make hotels their home and see everyone else as a threat.
                        20Perfect Match: Season 1Yes2023-02-141768000003446Familymurder, year 1830, 1830s, 19th century, winterHiding a mysterious past, a mother lives like a nameless fugitive with her daughter as they make hotels their home and see everyone else as a threat.
                        21The Marked Heart: Season 2 // Pálpito: Temporada 2Yes2023-04-19174300000118698.4Shortyear 2014, malaysia airlines flight mh370, airplane, investigation, missingThree young women join the newly formed Women's Army Corps (WACS) for varied reasons, and make contributions to the war effort.
                        22Murder Mystery 2Yes2023-03-311736000004196617.1Comedyjunk man, junk, junk wagon, city dump, landfillDocuseries following the FIA Formula One World Championship across multiple seasons.
                        23Murder Mystery 2Yes2023-03-311736000004196617.1Crimejunk man, junk, junk wagon, city dump, landfillDocuseries following the FIA Formula One World Championship across multiple seasons.
                        24Murder Mystery 2Yes2023-03-311736000004196617.1Dramajunk man, junk, junk wagon, city dump, landfillDocuseries following the FIA Formula One World Championship across multiple seasons.
                        25Never Have I Ever: Season 4Yes2023-02-10163000000155.6Animationmagic, power, young woman, soldier, gay manThings go badly for a hack director and film crew shooting a low budget zombie movie in an abandoned WWII Japanese facility, when they are attacked by real zombies.
                        26Never Have I Ever: Season 4Yes2023-02-10163000000155.6Shortmagic, power, young woman, soldier, gay manThings go badly for a hack director and film crew shooting a low budget zombie movie in an abandoned WWII Japanese facility, when they are attacked by real zombies.
                        27Your Place or MineYes2022-12-21161100000189.4Dramaparody comedy, spoofIn the wake of King Edward's death, Uhtred of Bebbanburg and his comrades adventure across a fractured kingdom in the hopes of uniting England at last.
                        28Your Place or MineYes2022-12-21161100000189.4Fantasyparody comedy, spoofIn the wake of King Edward's death, Uhtred of Bebbanburg and his comrades adventure across a fractured kingdom in the hopes of uniting England at last.
                        29Your Place or MineYes2022-12-21161100000189.4Horrorparody comedy, spoofIn the wake of King Edward's death, Uhtred of Bebbanburg and his comrades adventure across a fractured kingdom in the hopes of uniting England at last.
                        30Chiquititas (2013)No2022-12-221576000001205.9Crimespaghetti western, italo western, eastern, ostern, second partSonic in a high-octane adventure where the fate of a strange new multiverse rests in his gloved hands.
                        31Chiquititas (2013)No2022-12-221576000001205.9Dramaspaghetti western, italo western, eastern, ostern, second partSonic in a high-octane adventure where the fate of a strange new multiverse rests in his gloved hands.
                        32Alchemy of Souls: Part 1 // 환혼: 파트 1Yes2022-10-191521000003827.1Documentarycontroversy, girl, laundry drying on a clothesline, african american, clotheslineA German youth eagerly enters World War I, but his enthusiasm wanes as he gets a firsthand view of the horror.
                        33Alchemy of Souls: Part 1 // 환혼: 파트 1Yes2022-10-191521000003827.1Shortcontroversy, girl, laundry drying on a clothesline, african american, clotheslineA German youth eagerly enters World War I, but his enthusiasm wanes as he gets a firsthand view of the horror.
                        34Outer Banks: Season 2Yes2021-06-101514000001183526.6Crimepsychological drama, overprotective mother, cult, hotel, peer pressureAn unusual and touching bond develops when grieving Oona reaches out to a mysterious homeless man, offering him a place to stay in her garden shed.
                        35Outer Banks: Season 2Yes2021-06-101514000001183526.6Horrorpsychological drama, overprotective mother, cult, hotel, peer pressureAn unusual and touching bond develops when grieving Oona reaches out to a mysterious homeless man, offering him a place to stay in her garden shed.
                        36Outer Banks: Season 2Yes2021-06-101514000001183526.6Mysterypsychological drama, overprotective mother, cult, hotel, peer pressureAn unusual and touching bond develops when grieving Oona reaches out to a mysterious homeless man, offering him a place to stay in her garden shed.
                        37Til Money Do Us Part: Season 1 // Hasta que la plata nos separe: Temporada 1No2023-04-26148600000132166.1Documentarywacs, war widow, war game, male female relationship, father daughter relationshipA single mother who is a renowned hired killer finds it difficult to achieve a balance between her personal and work life.
                        38Mr. Queen // 철인왕후No2022-12-1614690000068.6Sportf1, formula 1, motor sports, car race, championshipAn Interpol agent successfully tracks down the world's most wanted art thief with help from a rival thief. But nothing is as it seems as a series of double-crosses ensues.
                        39Manifest: Season 1No2023-06-0914670000079Shortyear in title, 2000s, number in titleThale (17) has just moved with her parents to a small town after her mother has a new job in the local police. After a student is killed brutally at a party Thale attends, she becomes a key witness. Was the killer an animal? A wolf?
                        40Manifest: Season 1No2023-06-0914670000079Dramayear in title, 2000s, number in titleThale (17) has just moved with her parents to a small town after her mother has a new job in the local police. After a student is killed brutally at a party Thale attends, she becomes a key witness. Was the killer an animal? A wolf?
                        41PAW Patrol: Season 6No2023-03-0114010000098356.8Documentarydrug dealers, kidnapping, child kidnapping, shot in the head, bangladeshApril 1940. The eyes of the world are on Narvik, a small town in northern Norway, source of the iron ore needed for Hitler's war machinery. Through two months of fierce winter warfare, Hitler is dealt his first defeat.
                        42PAW Patrol: Season 6No2023-03-0114010000098356.8Crimedrug dealers, kidnapping, child kidnapping, shot in the head, bangladeshApril 1940. The eyes of the world are on Narvik, a small town in northern Norway, source of the iron ore needed for Hitler's war machinery. Through two months of fierce winter warfare, Hitler is dealt his first defeat.
                        43The Good Bad Mother: Limited Series // 나쁜엄마: 리미티드 시리즈Yes2023-06-151399000007407.6Dramasingle take, zombie, film crew, television broadcast, rooftopWhen a young girl stows away on the ship of a legendary sea monster hunter, they launch an epic journey into uncharted waters , and make history to boot.
                        44The Good Bad Mother: Limited Series // 나쁜엄마: 리미티드 시리즈Yes2023-06-151399000007407.6Romancesingle take, zombie, film crew, television broadcast, rooftopWhen a young girl stows away on the ship of a legendary sea monster hunter, they launch an epic journey into uncharted waters , and make history to boot.
                        45The Recruit: Season 1Yes2023-02-221393000004268807Comedylawyer, 19th century, legal, legal drama, legal battleAn orphaned boy enrolls in a school of wizardry, where he learns the truth about himself, his family and the terrible evil that haunts the magical world.
                        46Bloodhounds: Season 1 // 사냥개들: 시즌 1Yes2020-12-251366000001113617.6Actionanglo saxon, kingdom, exploration, warrior, epicBased on the true story of a father and son who repair their fractured relationship during a forced hike of the Appalachian trail to find their beloved lost dog.
                        47Bloodhounds: Season 1 // 사냥개들: 시즌 1Yes2020-12-251366000001113617.6Adventureanglo saxon, kingdom, exploration, warrior, epicBased on the true story of a father and son who repair their fractured relationship during a forced hike of the Appalachian trail to find their beloved lost dog.
                        48Bloodhounds: Season 1 // 사냥개들: 시즌 1Yes2020-12-251366000001113617.6Dramaanglo saxon, kingdom, exploration, warrior, epicBased on the true story of a father and son who repair their fractured relationship during a forced hike of the Appalachian trail to find their beloved lost dog.
                        49Glass Onion: A Knives Out MysteryYes2020-05-311362000001556.4Documentaryfast, based on video game, sonic the hedgehog, anthropomorphic animal, sonic the hedgehog characterCharlie Brandis leads a quiet and uneventful life as a wallflower. His parents trust him, his friends like him, girls are indifferent toward him. Then there's the girl he's watched from afar, Annie Briggs, who doesn't even know he...
                        50Black Mirror: Season 6Yes2023-01-271348000001024.9Horrorlawyer, spin off, psychosomatic illness, criminal lawyer, drug tradeIt follows the rise and fall of the American financier and ponzi schemer: Madoff.
                        51Triptych: Season 1 // Tríada: Temporada 1Yes2022-05-271336000001746.4Drama1910s, anti war, shell shock, ptsd post traumatic stress disorder, depressionShort documentary about making the second season of The Witcher (2019).
                        52Triptych: Season 1 // Tríada: Temporada 1Yes2022-05-271336000001746.4Western1910s, anti war, shell shock, ptsd post traumatic stress disorder, depressionShort documentary about making the second season of The Witcher (2019).
                        53Bridgerton: Season 1Yes2022-03-25133400000145919.2Dramatitle co written by female, title co directed by female, f ratedCharlie Brandis leads a quiet and uneventful life as a wallflower. His parents trust him, his friends like him, girls are indifferent toward him. Then there's the girl he's watched from afar, Annie Briggs, who doesn't even know he...
                        54Bridgerton: Season 1Yes2022-03-25133400000145919.2Horrortitle co written by female, title co directed by female, f ratedCharlie Brandis leads a quiet and uneventful life as a wallflower. His parents trust him, his friends like him, girls are indifferent toward him. Then there's the girl he's watched from afar, Annie Briggs, who doesn't even know he...
                        55Bridgerton: Season 1Yes2022-03-25133400000145919.2 SciFititle co written by female, title co directed by female, f ratedCharlie Brandis leads a quiet and uneventful life as a wallflower. His parents trust him, his friends like him, girls are indifferent toward him. Then there's the girl he's watched from afar, Annie Briggs, who doesn't even know he...
                        56The Marked Heart: Season 1 // Pálpito: Temporada 1Yes2023-01-06120500000483708.5Documentarynon fictionMarion and Jack try to rekindle their relationship with a visit to Paris, home of Marion's parents ,- and several of her ex-boyfriends.
                        57The Marked Heart: Season 1 // Pálpito: Temporada 1Yes2023-01-06120500000483708.5Sportnon fictionMarion and Jack try to rekindle their relationship with a visit to Paris, home of Marion's parents ,- and several of her ex-boyfriends.
                        58Little Angel: Volume 1Yes2023-04-281200000001631916Actionhomosexual, gay serial killer, murder, serial killer, homosexualityIn celebration of Season 2 being released soon, the Glitch Productions team put all of Season 1 into a single movie to watch in one go.
                        59Little Angel: Volume 1Yes2023-04-281200000001631916Comedyhomosexual, gay serial killer, murder, serial killer, homosexualityIn celebration of Season 2 being released soon, the Glitch Productions team put all of Season 1 into a single movie to watch in one go.
                        60Little Angel: Volume 1Yes2023-04-281200000001631916Crimehomosexual, gay serial killer, murder, serial killer, homosexualityIn celebration of Season 2 being released soon, the Glitch Productions team put all of Season 1 into a single movie to watch in one go.
                        61PAW Patrol: Season 5No2023-03-081189000002511.6Shortnorwegian army, nazi invasion of norway, winter, year 1940, man in uniformThree young women looking for adventure get jobs on a dude ranch.
                        62PAW Patrol: Season 5No2023-03-081189000002511.6Comedynorwegian army, nazi invasion of norway, winter, year 1940, man in uniformThree young women looking for adventure get jobs on a dude ranch.
                        63Sex/Life: Season 1Yes2023-05-1911580000070577.4Biographycgi animation, bounty hunter, alien, danger, laser gunThe trials and tribulations of criminal lawyer Jimmy McGill in the years leading up to his fateful run-in with Walter White and Jesse Pinkman.
                        64Sex/Life: Season 1Yes2023-05-1911580000070577.4Crimecgi animation, bounty hunter, alien, danger, laser gunThe trials and tribulations of criminal lawyer Jimmy McGill in the years leading up to his fateful run-in with Walter White and Jesse Pinkman.
                        65Sex/Life: Season 1Yes2023-05-1911580000070577.4Dramacgi animation, bounty hunter, alien, danger, laser gunThe trials and tribulations of criminal lawyer Jimmy McGill in the years leading up to his fateful run-in with Walter White and Jesse Pinkman.
                        66We Have a GhostYes2023-01-27113600000331796.9Actiondog, search, find, journey, fatherAn executive goes through an unexpected breakup, then accepting an assignment to go undercover and learn about the tourist industry in Vietnam.
                        67We Have a GhostYes2023-01-27113600000331796.9Dramadog, search, find, journey, fatherAn executive goes through an unexpected breakup, then accepting an assignment to go undercover and learn about the tourist industry in Vietnam.
                        68We Have a GhostYes2023-01-27113600000331796.9Historydog, search, find, journey, fatherAn executive goes through an unexpected breakup, then accepting an assignment to go undercover and learn about the tourist industry in Vietnam.
                        69Crash Landing on You: Season 1 // 사랑의 불시착: 시즌 1Yes2017-10-03102800000667508.1Dramatv specialA lawyer defending a wealthy man begins to believe his client is guilty of more than just one crime.
                        70Crash Landing on You: Season 1 // 사랑의 불시착: 시즌 1Yes2017-10-03102800000667508.1Wartv specialA lawyer defending a wealthy man begins to believe his client is guilty of more than just one crime.
                        71MH370: The Plane That Disappeared: Limited SeriesYes2021-12-2910170000068865.5Actionparty, teenager, sex comedyFollows the tragedy in which terrorists detonated a bomb at the Boston Marathon's finish line; they carried out the attack by placing two homemade pressure-cooker bombs that resulted in three fatalities and numerous injuries.
                        72MH370: The Plane That Disappeared: Limited SeriesYes2021-12-2910170000068865.5Adventureparty, teenager, sex comedyFollows the tragedy in which terrorists detonated a bomb at the Boston Marathon's finish line; they carried out the attack by placing two homemade pressure-cooker bombs that resulted in three fatalities and numerous injuries.
                        73MH370: The Plane That Disappeared: Limited SeriesYes2021-12-2910170000068865.5Dramaparty, teenager, sex comedyFollows the tragedy in which terrorists detonated a bomb at the Boston Marathon's finish line; they carried out the attack by placing two homemade pressure-cooker bombs that resulted in three fatalities and numerous injuries.
                        74Breaking Bad: Season 2No2022-11-23990000002595.9ShortprisonIm Hwa Ryeong, a prickly, sensitive and hot-tempered queen, tries to turn her trouble making princes into proper crown princes.
                        75Breaking Bad: Season 2No2022-11-23990000002595.9BiographyprisonIm Hwa Ryeong, a prickly, sensitive and hot-tempered queen, tries to turn her trouble making princes into proper crown princes.
                        76Breaking Bad: Season 2No2022-11-23990000002595.9DramaprisonIm Hwa Ryeong, a prickly, sensitive and hot-tempered queen, tries to turn her trouble making princes into proper crown princes.
                        77Lockwood & Co.: Season 1Yes2022-12-2197800000267.1Comedyparty, teenager, sex comedyIt's 1940's Australia and siblings Maggie and Charles must endure taunts of newly enlisted teenagers, grapple with the fact that neither of them can fight in the war and resort to chess in order to pass the time.
                        78Lockwood & Co.: Season 1Yes2022-12-2197800000267.1Talk-Showparty, teenager, sex comedyIt's 1940's Australia and siblings Maggie and Charles must endure taunts of newly enlisted teenagers, grapple with the fact that neither of them can fight in the war and resort to chess in order to pass the time.
                        79You: Season 3Yes2022-05-209760000078.7Animationfemale full frontal nudity, female nudity, female frontal nudity, sex scene, country in titleElliott, a young fisherman with an extraordinary voice, gets the chance of a lifetime when high-profile music manager Suzanne discovers him at a party.
                        80You: Season 3Yes2022-05-209760000078.7Comedyfemale full frontal nudity, female nudity, female frontal nudity, sex scene, country in titleElliott, a young fisherman with an extraordinary voice, gets the chance of a lifetime when high-profile music manager Suzanne discovers him at a party.
                        81You: Season 3Yes2022-05-209760000078.7 SciFifemale full frontal nudity, female nudity, female frontal nudity, sex scene, country in titleElliott, a young fisherman with an extraordinary voice, gets the chance of a lifetime when high-profile music manager Suzanne discovers him at a party.
                        82Breaking Bad: Season 5No2023-01-19951000008407.5Dramafrench, vacation, europe, chest hair, male nudityElliott, a young fisherman with an extraordinary voice, gets the chance of a lifetime when high-profile music manager Suzanne discovers him at a party.
                        83Welcome to Eden: Season 2 // Bienvenidos a Edén: Temporada 2Yes2022-01-28946000002379.3Documentarybikini, women, young, f rated, best friendThe relationship of a well-known journalist and a down-to-earth teacher goes through hard times when she takes a new job.
                        84Welcome to Eden: Season 2 // Bienvenidos a Edén: Temporada 2Yes2022-01-28946000002379.3Shortbikini, women, young, f rated, best friendThe relationship of a well-known journalist and a down-to-earth teacher goes through hard times when she takes a new job.
                        85CoComelon: Season 2No2023-03-2492900000437824.9Actionlawyer, spin off, psychosomatic illness, criminal lawyer, drug tradeIn spite of their many differences, Cassie, a struggling singer-songwriter, and Luke, a troubled Marine, agree to marry solely for military benefits, but when tragedy strikes, the line between real and pretend begins to blur.
                        86CoComelon: Season 2No2023-03-2492900000437824.9Adventurelawyer, spin off, psychosomatic illness, criminal lawyer, drug tradeIn spite of their many differences, Cassie, a struggling singer-songwriter, and Luke, a troubled Marine, agree to marry solely for military benefits, but when tragedy strikes, the line between real and pretend begins to blur.
                        87CoComelon: Season 2No2023-03-2492900000437824.9Dramalawyer, spin off, psychosomatic illness, criminal lawyer, drug tradeIn spite of their many differences, Cassie, a struggling singer-songwriter, and Luke, a troubled Marine, agree to marry solely for military benefits, but when tragedy strikes, the line between real and pretend begins to blur.
                        88The Blacklist: Season 1No2020-12-10922000001484057.9Biographymale nudity, quirky comedy, love, island, escapeTwo rival newsreel photographers join forces to find an aviatrix's missing brother, who has disappeared in the Amazon rainforest.
                        89The Blacklist: Season 1No2020-12-10922000001484057.9Crimemale nudity, quirky comedy, love, island, escapeTwo rival newsreel photographers join forces to find an aviatrix's missing brother, who has disappeared in the Amazon rainforest.
                        90The Blacklist: Season 1No2020-12-10922000001484057.9Dramamale nudity, quirky comedy, love, island, escapeTwo rival newsreel photographers join forces to find an aviatrix's missing brother, who has disappeared in the Amazon rainforest.
                        91Shadow and Bone: Season 1Yes2021-05-3191400000161096.6Dramaanglo saxon, kingdom, exploration, warrior, epicA woman's life is turned upside-down when a dangerous man gets hold of her lost cell phone and uses it to track her every move.
                        92Shadow and Bone: Season 1Yes2021-05-3191400000161096.6Historyanglo saxon, kingdom, exploration, warrior, epicA woman's life is turned upside-down when a dangerous man gets hold of her lost cell phone and uses it to track her every move.
                        93Shadow and Bone: Season 1Yes2021-05-3191400000161096.6Waranglo saxon, kingdom, exploration, warrior, epicA woman's life is turned upside-down when a dangerous man gets hold of her lost cell phone and uses it to track her every move.
                        94You: Season 2Yes2017-08-3186100000118698.4Shortschool, hero, academy, master, witchThe trials and tribulations of criminal lawyer Jimmy McGill in the years leading up to his fateful run-in with Walter White and Jesse Pinkman.
                        95All of Us Are Dead: Season 1 // 지금 우리 학교는: 시즌 1Yes2022-11-15854000001936.6Documentarydonghua, chinese animation, chinese anime, team sports, basketballThis shocking documentary chronicles a happy-go-lucky nomad's ascent to viral stardom and the steep downward spiral that resulted in his imprisonment.
                        96Black Knight: Season 1 // 택배기사: 시즌 1Yes2023-04-1384600000496.8Comedyperformer, fisherman, song, life, managerA quirky, dysfunctional family's road trip is upended when they find themselves in the middle of the robot apocalypse and suddenly become humanity's unlikeliest last hope.
                        97Breaking Bad: Season 4No2017-07-2384400000118698.4Shortperformer, fisherman, song, life, managerDeep in the Dovre mountain, something gigantic wakes up after a thousand years in captivity. The creature destroys everything in its path and quickly approaches Oslo.
                        98Obsession: Limited SeriesYes2023-01-208360000089536.8Adventureeducational film, world war two, enemy, japanese soldier, training filmComedian Chris Rock performs a live stand-up special in Baltimore, Maryland.
                        99Obsession: Limited SeriesYes2023-01-208360000089536.8Biographyeducational film, world war two, enemy, japanese soldier, training filmComedian Chris Rock performs a live stand-up special in Baltimore, Maryland.
                        100Obsession: Limited SeriesYes2023-01-208360000089536.8Dramaeducational film, world war two, enemy, japanese soldier, training filmComedian Chris Rock performs a live stand-up special in Baltimore, Maryland.
                        ×

                        My Snippet

                        -- Number of shows released per year
                        SELECT
                        YEAR(releasedate) AS year,
                        COUNT(title) AS number_of_shows
                        FROM
                        student.netflix2023
                        GROUP BY
                        YEAR(releasedate)
                        ORDER BY
                        year ASC;
                        XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                          ×
                          INFO  : Compiling command(queryId=hive_20240327070912_4da3cfbb-0244-4969-b691-70910314a8d2): -- Number of shows released per year
                          SELECT
                              YEAR(releasedate) AS year,
                              COUNT(title) AS number_of_shows
                          FROM
                              student.netflix2023
                          GROUP BY
                              YEAR(releasedate)
                          ORDER BY
                              year ASC
                          INFO  : Semantic Analysis Completed
                          INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:year, type:int, comment:null), FieldSchema(name:number_of_shows, type:bigint, comment:null)], properties:null)
                          INFO  : Completed compiling command(queryId=hive_20240327070912_4da3cfbb-0244-4969-b691-70910314a8d2); Time taken: 0.051 seconds
                          INFO  : Concurrency mode is disabled, not creating a lock manager
                          INFO  : Executing command(queryId=hive_20240327070912_4da3cfbb-0244-4969-b691-70910314a8d2): -- Number of shows released per year
                          SELECT
                              YEAR(releasedate) AS year,
                              COUNT(title) AS number_of_shows
                          FROM
                              student.netflix2023
                          GROUP BY
                              YEAR(releasedate)
                          ORDER BY
                              year ASC
                          INFO  : Query ID = hive_20240327070912_4da3cfbb-0244-4969-b691-70910314a8d2
                          INFO  : Total jobs = 1
                          INFO  : Launching Job 1 out of 1
                          INFO  : Starting task [Stage-1:MAPRED] in serial mode
                          INFO  : Session is already open
                          INFO  : Dag name: -- Number of shows released per year
                          S...ASC(Stage-1)
                          INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                          
                          INFO  : Map 1: 0/1	Reducer 2: 0/1	Reducer 3: 0/1
                          INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1
                          INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	Reducer 3: 0/1	
                          INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 0(+1)/1	
                          INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                          INFO  : Completed executing command(queryId=hive_20240327070912_4da3cfbb-0244-4969-b691-70910314a8d2); Time taken: 5.008 seconds
                          INFO  : OK

                          Select the chart parameters on the left

                          2,0102,0122,0142,0162,0182,0202,0225001k1.5k2k2.5k32.751k
                          number_of_showsnumber_of_shows

                          My Snippet

                          -- Total Number of Ratings per Genre
                          SELECT
                          genre,
                          SUM(numberofratings) AS total_ratings,
                          SUM(hoursviewed) AS total_hours_viewed
                          FROM
                          netflix2023_genre_exploded
                          GROUP BY
                          genre
                          ORDER BY
                          total_ratings DESC;
                          XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                            ×
                            INFO  : Compiling command(queryId=hive_20240327070937_4fc4905b-1b11-4a47-838b-d17075297059): -- Total Number of Ratings per Genre
                            SELECT
                                genre,
                                SUM(numberofratings) AS total_ratings,
                                SUM(hoursviewed) AS total_hours_viewed
                            FROM
                                netflix2023_genre_exploded
                            GROUP BY
                                genre
                            ORDER BY
                                total_ratings DESC
                            INFO  : Semantic Analysis Completed
                            INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:genre, type:string, comment:null), FieldSchema(name:total_ratings, type:bigint, comment:null), FieldSchema(name:total_hours_viewed, type:bigint, comment:null)], properties:null)
                            INFO  : Completed compiling command(queryId=hive_20240327070937_4fc4905b-1b11-4a47-838b-d17075297059); Time taken: 0.026 seconds
                            INFO  : Concurrency mode is disabled, not creating a lock manager
                            INFO  : Executing command(queryId=hive_20240327070937_4fc4905b-1b11-4a47-838b-d17075297059): -- Total Number of Ratings per Genre
                            SELECT
                                genre,
                                SUM(numberofratings) AS total_ratings,
                                SUM(hoursviewed) AS total_hours_viewed
                            FROM
                                netflix2023_genre_exploded
                            GROUP BY
                                genre
                            ORDER BY
                                total_ratings DESC
                            INFO  : Query ID = hive_20240327070937_4fc4905b-1b11-4a47-838b-d17075297059
                            INFO  : Total jobs = 1
                            INFO  : Launching Job 1 out of 1
                            INFO  : Starting task [Stage-1:MAPRED] in serial mode
                            INFO  : Session is already open
                            INFO  : Dag name: -- Total Number of Ratings per Genre
                            ...DESC(Stage-1)
                            INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                            
                            INFO  : Map 1: 0/1	Reducer 2: 0/1	Reducer 3: 0/1
                            INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1
                            INFO  : Map 1: 1/1	Reducer 2: 0/1	Reducer 3: 0/1	
                            INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	Reducer 3: 0/1	
                            INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 0(+1)/1	
                            INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                            INFO  : Completed executing command(queryId=hive_20240327070937_4fc4905b-1b11-4a47-838b-d17075297059); Time taken: 5.225 seconds
                            INFO  : OK
                            columns (4)
                            int
                            genre string
                            total_ratings bigint
                            total_hours_viewed bigint
                              genre total_ratings total_hours_viewed
                              genre total_ratings total_hours_viewed
                            1Drama11348030453497900000
                            2Comedy9210741951425000000
                            3Action5963798221657800000
                            4Short5429817827529600000
                            5Adventure4632555019450000000
                            6Crime4417766321016100000
                            7Documentary4147653323739200000
                            8Animation3834911221014100000
                            9Romance2149026516111500000
                            10Thriller2089267110647000000
                            11Family189479748958800000
                            12Horror189228419596800000
                            13Mystery159707107194600000
                            14Biography136332057119600000
                            15History127204525780700000
                            16Sport126339594401600000
                            17Fantasy113493324877300000
                            18Music73009203948700000
                            19 SciFi68045013320700000
                            20RealityTV57738874736900000
                            21War44667891307900000
                            22Musical40762072720700000
                            23Talk-Show36317991499800000
                            24Game-Show22471901511200000
                            25Western1268046863200000
                            26News760307291800000

                            My Snippet

                            -- Impact of Global Availability on Viewership and Ratings
                            SELECT
                            availableglobally,
                            AVG(hoursviewed) AS average_hours_viewed,
                            AVG(rating) AS average_rating
                            FROM
                            student.netflix2023
                            GROUP BY
                            availableglobally;
                            XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                              ×
                              INFO  : Compiling command(queryId=hive_20240327070947_a8005607-0112-4712-aa3f-7abf95207355): -- Impact of Global Availability on Viewership and Ratings
                              SELECT 
                                  availableglobally,
                                  AVG(hoursviewed) AS average_hours_viewed,
                                  AVG(rating) AS average_rating
                              FROM
                                  student.netflix2023
                              GROUP BY 
                                  availableglobally
                              INFO  : Semantic Analysis Completed
                              INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:availableglobally, type:string, comment:null), FieldSchema(name:average_hours_viewed, type:double, comment:null), FieldSchema(name:average_rating, type:double, comment:null)], properties:null)
                              INFO  : Completed compiling command(queryId=hive_20240327070947_a8005607-0112-4712-aa3f-7abf95207355); Time taken: 0.049 seconds
                              INFO  : Concurrency mode is disabled, not creating a lock manager
                              INFO  : Executing command(queryId=hive_20240327070947_a8005607-0112-4712-aa3f-7abf95207355): -- Impact of Global Availability on Viewership and Ratings
                              SELECT 
                                  availableglobally,
                                  AVG(hoursviewed) AS average_hours_viewed,
                                  AVG(rating) AS average_rating
                              FROM
                                  student.netflix2023
                              GROUP BY 
                                  availableglobally
                              INFO  : Query ID = hive_20240327070947_a8005607-0112-4712-aa3f-7abf95207355
                              INFO  : Total jobs = 1
                              INFO  : Launching Job 1 out of 1
                              INFO  : Starting task [Stage-1:MAPRED] in serial mode
                              INFO  : Session is already open
                              INFO  : Dag name: -- Impact of Global Avai...availableglobally(Stage-1)
                              INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                              
                              INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	
                              INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	
                              INFO  : Map 1: 1/1	Reducer 2: 1/1	
                              INFO  : Completed executing command(queryId=hive_20240327070947_a8005607-0112-4712-aa3f-7abf95207355); Time taken: 0.631 seconds
                              INFO  : OK
                              columns (4)
                              int
                              availableglobally string
                              average_hours_viewed double
                              average_rating double
                                availableglobally average_hours_viewed average_rating
                                availableglobally average_hours_viewed average_rating
                              1No9093003.7033336.6432862721538
                              2Yes15299415.947181316.611503301168082

                              My Snippet

                              -- Attempt at creating buckets for rating categories
                              SELECT
                              availableglobally,
                              CASE
                              WHEN rating >= 8 THEN 'High'
                              WHEN rating >= 5 THEN 'Medium'
                              ELSE 'Low'
                              END AS rating_category,
                              COUNT(*) AS count
                              FROM
                              student.netflix2023
                              GROUP BY
                              availableglobally,
                              CASE
                              WHEN rating >= 8 THEN 'High'
                              WHEN rating >= 5 THEN 'Medium'
                              ELSE 'Low'
                              END
                              ORDER BY
                              availableglobally,
                              rating_category
                              XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                ×
                                INFO  : Compiling command(queryId=hive_20240327070953_1cecf51d-c9e5-45a6-ad14-1c35743ebba4): SELECT
                                    availableglobally,
                                    CASE 
                                        WHEN rating >= 8 THEN 'High'
                                        WHEN rating >= 5 THEN 'Medium'
                                        ELSE 'Low'
                                    END AS rating_category,
                                    COUNT(*) AS count
                                FROM 
                                    student.netflix2023
                                GROUP BY 
                                    availableglobally,
                                    CASE 
                                        WHEN rating >= 8 THEN 'High'
                                        WHEN rating >= 5 THEN 'Medium'
                                        ELSE 'Low'
                                    END
                                ORDER BY 
                                    availableglobally,
                                    rating_category
                                INFO  : Semantic Analysis Completed
                                INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:availableglobally, type:string, comment:null), FieldSchema(name:rating_category, type:string, comment:null), FieldSchema(name:count, type:bigint, comment:null)], properties:null)
                                INFO  : Completed compiling command(queryId=hive_20240327070953_1cecf51d-c9e5-45a6-ad14-1c35743ebba4); Time taken: 0.08 seconds
                                INFO  : Concurrency mode is disabled, not creating a lock manager
                                INFO  : Executing command(queryId=hive_20240327070953_1cecf51d-c9e5-45a6-ad14-1c35743ebba4): SELECT
                                    availableglobally,
                                    CASE 
                                        WHEN rating >= 8 THEN 'High'
                                        WHEN rating >= 5 THEN 'Medium'
                                        ELSE 'Low'
                                    END AS rating_category,
                                    COUNT(*) AS count
                                FROM 
                                    student.netflix2023
                                GROUP BY 
                                    availableglobally,
                                    CASE 
                                        WHEN rating >= 8 THEN 'High'
                                        WHEN rating >= 5 THEN 'Medium'
                                        ELSE 'Low'
                                    END
                                ORDER BY 
                                    availableglobally,
                                    rating_category
                                INFO  : Query ID = hive_20240327070953_1cecf51d-c9e5-45a6-ad14-1c35743ebba4
                                INFO  : Total jobs = 1
                                INFO  : Launching Job 1 out of 1
                                INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                INFO  : Session is already open
                                INFO  : Dag name: SELECT
                                    availableglobal...rating_category(Stage-1)
                                INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                
                                INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                INFO  : Map 1: 1/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 0/1	
                                INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                                INFO  : Completed executing command(queryId=hive_20240327070953_1cecf51d-c9e5-45a6-ad14-1c35743ebba4); Time taken: 0.839 seconds
                                INFO  : OK
                                  availableglobally rating_category count
                                  availableglobally rating_category count
                                1NoHigh1575
                                2NoLow833
                                3NoMedium7583
                                4YesHigh631
                                5YesLow331
                                6YesMedium2976

                                My Snippet

                                -- Most popular show per year by Hours Viewed
                                -- Uses Common Table Expression (CTE) for convenience and code reproducibility
                                -- Note: I used Row_number instead of Rank as many rows strangely had the
                                -- same hoursviewed
                                WITH RankedShows AS (
                                SELECT
                                YEAR(releasedate) AS year,
                                title,
                                hoursviewed,
                                ROW_NUMBER() OVER (PARTITION BY YEAR(releasedate) ORDER BY hoursviewed DESC) AS rank
                                FROM
                                student.netflix2023
                                )
                                SELECT
                                year,
                                title,
                                hoursviewed
                                FROM
                                RankedShows
                                WHERE
                                rank = 1
                                ORDER BY
                                year ASC;
                                XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                  ×
                                  INFO  : Compiling command(queryId=hive_20240327071038_fcb9cd22-9b76-4d43-881c-7c39d079ed48): -- Most popular show per year by Hours Viewed
                                  -- Uses Common Table Expression (CTE) for convenience and code reproducibility
                                  -- Note: I used Row_number instead of Rank as many rows strangely had the 
                                  -- same hoursviewed
                                  WITH RankedShows AS (
                                      SELECT 
                                          YEAR(releasedate) AS year,
                                          title,
                                          hoursviewed,
                                          ROW_NUMBER() OVER (PARTITION BY YEAR(releasedate) ORDER BY hoursviewed DESC) AS rank
                                      FROM 
                                          student.netflix2023
                                  )
                                  SELECT 
                                      year,
                                      title,
                                      hoursviewed
                                  FROM 
                                      RankedShows
                                  WHERE 
                                      rank = 1
                                  ORDER BY
                                      year ASC
                                  INFO  : Semantic Analysis Completed
                                  INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:year, type:int, comment:null), FieldSchema(name:title, type:string, comment:null), FieldSchema(name:hoursviewed, type:bigint, comment:null)], properties:null)
                                  INFO  : Completed compiling command(queryId=hive_20240327071038_fcb9cd22-9b76-4d43-881c-7c39d079ed48); Time taken: 0.061 seconds
                                  INFO  : Concurrency mode is disabled, not creating a lock manager
                                  INFO  : Executing command(queryId=hive_20240327071038_fcb9cd22-9b76-4d43-881c-7c39d079ed48): -- Most popular show per year by Hours Viewed
                                  -- Uses Common Table Expression (CTE) for convenience and code reproducibility
                                  -- Note: I used Row_number instead of Rank as many rows strangely had the 
                                  -- same hoursviewed
                                  WITH RankedShows AS (
                                      SELECT 
                                          YEAR(releasedate) AS year,
                                          title,
                                          hoursviewed,
                                          ROW_NUMBER() OVER (PARTITION BY YEAR(releasedate) ORDER BY hoursviewed DESC) AS rank
                                      FROM 
                                          student.netflix2023
                                  )
                                  SELECT 
                                      year,
                                      title,
                                      hoursviewed
                                  FROM 
                                      RankedShows
                                  WHERE 
                                      rank = 1
                                  ORDER BY
                                      year ASC
                                  INFO  : Query ID = hive_20240327071038_fcb9cd22-9b76-4d43-881c-7c39d079ed48
                                  INFO  : Total jobs = 1
                                  INFO  : Launching Job 1 out of 1
                                  INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                  INFO  : Session is already open
                                  INFO  : Dag name: -- Most popular show per year by Hours...ASC(Stage-1)
                                  INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                  
                                  INFO  : Map 1: 0/1	Reducer 2: 0/1	Reducer 3: 0/1
                                  INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1
                                  INFO  : Map 1: 1/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                  INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	Reducer 3: 0/1	
                                  INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                                  INFO  : Completed executing command(queryId=hive_20240327071038_fcb9cd22-9b76-4d43-881c-7c39d079ed48); Time taken: 5.359 seconds
                                  INFO  : OK
                                    year title hoursviewed
                                    year title hoursviewed
                                  12010Chi mon chaton: Season 117600000
                                  22011School Tales The Series: Season 1 // โรงเรียนผีมีอยู่ว่า...: ซีซั่น 194700000
                                  32012Mallesham3500000
                                  42013DAHMER: Monster: The Jeffrey Dahmer Story48800000
                                  52014Ya Boy Kongming!: Season 1 // パリピ孔明: シーズン161100000
                                  62015Pinky Malinky: Part 359900000
                                  72016Muted: Limited Series // El silencio: Miniserie98500000
                                  82017Crash Landing on You: Season 1 // 사랑의 불시착: 시즌 1102800000
                                  92018Jack the Giant Slayer123500000
                                  102019Bridgerton: Season 2120300000
                                  112020Stretch Armstrong & the Flex Fighters: Season 2184000000
                                  122021Ginny & Georgia: Season 1302100000
                                  132022Sexy Beasts: Season 1622800000
                                  142023The Night Agent: Season 1812100000

                                  My Snippet

                                  -- Most popular show per year by rating
                                  WITH RankedShows AS (
                                  SELECT
                                  title,
                                  YEAR(releasedate) AS year,
                                  rating,
                                  RANK() OVER (PARTITION BY YEAR(releasedate) ORDER BY rating DESC) AS rank
                                  FROM
                                  netflix2023
                                  )
                                  SELECT
                                  year,
                                  title,
                                  rating
                                  FROM
                                  RankedShows
                                  WHERE
                                  rank = 1
                                  ORDER BY
                                  year ASC;
                                  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                    ×
                                    INFO  : Compiling command(queryId=hive_20240327071050_5ce4c4a1-849a-4b4d-a62c-7a0dd10925bd): -- Most popular show per year by rating
                                    WITH RankedShows AS (
                                        SELECT
                                            title,
                                            YEAR(releasedate) AS year,
                                            rating,
                                            RANK() OVER (PARTITION BY YEAR(releasedate) ORDER BY rating DESC) AS rank
                                        FROM
                                            netflix2023
                                    )
                                    SELECT
                                        year,
                                        title,
                                        rating
                                    FROM
                                        RankedShows
                                    WHERE
                                        rank = 1
                                    ORDER BY
                                        year ASC
                                    INFO  : Semantic Analysis Completed
                                    INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:year, type:int, comment:null), FieldSchema(name:title, type:string, comment:null), FieldSchema(name:rating, type:double, comment:null)], properties:null)
                                    INFO  : Completed compiling command(queryId=hive_20240327071050_5ce4c4a1-849a-4b4d-a62c-7a0dd10925bd); Time taken: 0.062 seconds
                                    INFO  : Concurrency mode is disabled, not creating a lock manager
                                    INFO  : Executing command(queryId=hive_20240327071050_5ce4c4a1-849a-4b4d-a62c-7a0dd10925bd): -- Most popular show per year by rating
                                    WITH RankedShows AS (
                                        SELECT
                                            title,
                                            YEAR(releasedate) AS year,
                                            rating,
                                            RANK() OVER (PARTITION BY YEAR(releasedate) ORDER BY rating DESC) AS rank
                                        FROM
                                            netflix2023
                                    )
                                    SELECT
                                        year,
                                        title,
                                        rating
                                    FROM
                                        RankedShows
                                    WHERE
                                        rank = 1
                                    ORDER BY
                                        year ASC
                                    INFO  : Query ID = hive_20240327071050_5ce4c4a1-849a-4b4d-a62c-7a0dd10925bd
                                    INFO  : Total jobs = 1
                                    INFO  : Launching Job 1 out of 1
                                    INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                    INFO  : Session is already open
                                    INFO  : Dag name: -- Most popular show per year by ratin...ASC(Stage-1)
                                    INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                    
                                    INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                    INFO  : Map 1: 1/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                    INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	Reducer 3: 0/1	
                                    INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 0(+1)/1	
                                    INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                                    INFO  : Completed executing command(queryId=hive_20240327071050_5ce4c4a1-849a-4b4d-a62c-7a0dd10925bd); Time taken: 0.972 seconds
                                    INFO  : OK
                                      year title rating
                                      year title rating
                                    12010Guardian: The Lonely and Great God: Season 1 // 도깨비: 시즌18.4
                                    22011The Myth // 神話 // 神话8.1
                                    32012African Queens: Njinga: Limited Series8.4
                                    42013On Children: Season 1 // 你的孩子不是你的孩子: 第 1 季8.9
                                    52013Story of My Family!!!: Season 1 // 俺の家の話: シーズン18.9
                                    62014Shiny_Flakes: The Teenage Drug Lord9.7
                                    72015Naruto Shippuden: Season 10 // NARUTO -ナルト - 疾風伝: 五影編9.3
                                    82016The Dig9.9
                                    92017Switch // ドラマスペシャル「スイッチ」9.7
                                    102017Confessions of an Invisible Girl // Confissões de uma Garota Excluída9.7
                                    112017Overlord IV // オーバーロードⅣ9.7
                                    122018Once Upon A Time: Season 1 // Pada Zaman Dahulu: Musim 110
                                    132019Battle: Freestyle10
                                    142020Geng: The Adventure Begins // Geng: Pengembaraan bermula9.9
                                    152021XXX: State of the Union10
                                    162022Barbie Epic Road Trip10
                                    172022School of Roars: Season 110
                                    182022Everything But a Man10
                                    192023Switch // ドラマスペシャル「スイッチ」9.7

                                    My Snippet

                                    -- Rank by rating then hoursviewed
                                    WITH RankedMovies AS (
                                    SELECT
                                    title,
                                    YEAR(releasedate) AS year,
                                    rating,
                                    hoursviewed,
                                    ROW_NUMBER() OVER (PARTITION BY YEAR(releasedate) ORDER BY rating DESC, hoursviewed DESC) as rank
                                    FROM
                                    netflix2023
                                    )
                                    SELECT
                                    year,
                                    title,
                                    rating,
                                    hoursviewed
                                    FROM
                                    RankedMovies
                                    WHERE
                                    rank = 1
                                    ORDER BY
                                    year ASC;
                                    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                      ×
                                      INFO  : Compiling command(queryId=hive_20240327071056_bed42334-d4c6-4a12-8b68-3364e8257ee1): -- Rank by rating then hoursviewed
                                      WITH RankedMovies AS (
                                          SELECT
                                              title,
                                              YEAR(releasedate) AS year,
                                              rating,
                                              hoursviewed,
                                              ROW_NUMBER() OVER (PARTITION BY YEAR(releasedate) ORDER BY rating DESC, hoursviewed DESC) as rank
                                          FROM
                                              netflix2023
                                      )
                                      SELECT
                                          year,
                                          title,
                                          rating,
                                          hoursviewed
                                      FROM
                                          RankedMovies
                                      WHERE
                                          rank = 1
                                      ORDER BY
                                          year ASC
                                      INFO  : Semantic Analysis Completed
                                      INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:year, type:int, comment:null), FieldSchema(name:title, type:string, comment:null), FieldSchema(name:rating, type:double, comment:null), FieldSchema(name:hoursviewed, type:bigint, comment:null)], properties:null)
                                      INFO  : Completed compiling command(queryId=hive_20240327071056_bed42334-d4c6-4a12-8b68-3364e8257ee1); Time taken: 0.056 seconds
                                      INFO  : Concurrency mode is disabled, not creating a lock manager
                                      INFO  : Executing command(queryId=hive_20240327071056_bed42334-d4c6-4a12-8b68-3364e8257ee1): -- Rank by rating then hoursviewed
                                      WITH RankedMovies AS (
                                          SELECT
                                              title,
                                              YEAR(releasedate) AS year,
                                              rating,
                                              hoursviewed,
                                              ROW_NUMBER() OVER (PARTITION BY YEAR(releasedate) ORDER BY rating DESC, hoursviewed DESC) as rank
                                          FROM
                                              netflix2023
                                      )
                                      SELECT
                                          year,
                                          title,
                                          rating,
                                          hoursviewed
                                      FROM
                                          RankedMovies
                                      WHERE
                                          rank = 1
                                      ORDER BY
                                          year ASC
                                      INFO  : Query ID = hive_20240327071056_bed42334-d4c6-4a12-8b68-3364e8257ee1
                                      INFO  : Total jobs = 1
                                      INFO  : Launching Job 1 out of 1
                                      INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                      INFO  : Session is already open
                                      INFO  : Dag name: -- Rank by rating then hoursviewed
                                      WIT...ASC(Stage-1)
                                      INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                      
                                      INFO  : Map 1: 0/1	Reducer 2: 0/1	Reducer 3: 0/1
                                      INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1
                                      INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	Reducer 3: 0/1	
                                      INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 0(+1)/1	
                                      INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                                      INFO  : Completed executing command(queryId=hive_20240327071056_bed42334-d4c6-4a12-8b68-3364e8257ee1); Time taken: 5.522 seconds
                                      INFO  : OK
                                        year title rating hoursviewed
                                        year title rating hoursviewed
                                      12010Guardian: The Lonely and Great God: Season 1 // 도깨비: 시즌18.411300000
                                      22011The Myth // 神話 // 神话8.194700000
                                      32012African Queens: Njinga: Limited Series8.43500000
                                      42013Story of My Family!!!: Season 1 // 俺の家の話: シーズン18.924700000
                                      52014Shiny_Flakes: The Teenage Drug Lord9.74600000
                                      62015Naruto Shippuden: Season 10 // NARUTO -ナルト - 疾風伝: 五影編9.3800000
                                      72016The Dig9.9600000
                                      82017Overlord IV // オーバーロードⅣ9.71400000
                                      92018Once Upon A Time: Season 1 // Pada Zaman Dahulu: Musim 110600000
                                      102019Battle: Freestyle105100000
                                      112020Geng: The Adventure Begins // Geng: Pengembaraan bermula9.92600000
                                      122021XXX: State of the Union106000000
                                      132022Everything But a Man1032100000
                                      142023Switch // ドラマスペシャル「スイッチ」9.7300000

                                      My Snippet

                                      -- Total Hours Viewed over the years
                                      SELECT
                                      YEAR(releasedate) AS year,
                                      SUM(hoursviewed) AS `Total Hours Viewed`
                                      FROM
                                      student.netflix2023
                                      GROUP BY
                                      YEAR(releasedate)
                                      XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                        ×
                                        INFO  : Compiling command(queryId=hive_20240327071106_97da438d-0215-44f6-88d0-e0344e680326): -- Total Hours Viewed over the years
                                        SELECT 
                                            YEAR(releasedate) AS year,
                                            SUM(hoursviewed) AS `Total Hours Viewed`
                                        FROM 
                                            student.netflix2023
                                        GROUP BY 
                                            YEAR(releasedate)
                                        INFO  : Semantic Analysis Completed
                                        INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:year, type:int, comment:null), FieldSchema(name:total hours viewed, type:bigint, comment:null)], properties:null)
                                        INFO  : Completed compiling command(queryId=hive_20240327071106_97da438d-0215-44f6-88d0-e0344e680326); Time taken: 0.048 seconds
                                        INFO  : Concurrency mode is disabled, not creating a lock manager
                                        INFO  : Executing command(queryId=hive_20240327071106_97da438d-0215-44f6-88d0-e0344e680326): -- Total Hours Viewed over the years
                                        SELECT 
                                            YEAR(releasedate) AS year,
                                            SUM(hoursviewed) AS `Total Hours Viewed`
                                        FROM 
                                            student.netflix2023
                                        GROUP BY 
                                            YEAR(releasedate)
                                        INFO  : Query ID = hive_20240327071106_97da438d-0215-44f6-88d0-e0344e680326
                                        INFO  : Total jobs = 1
                                        INFO  : Launching Job 1 out of 1
                                        INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                        INFO  : Session is already open
                                        INFO  : Dag name: -- Total Hours Viewed ov...YEAR(releasedate)(Stage-1)
                                        INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                        
                                        INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	
                                        INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	
                                        INFO  : Map 1: 1/1	Reducer 2: 1/1	
                                        INFO  : Completed executing command(queryId=hive_20240327071106_97da438d-0215-44f6-88d0-e0344e680326); Time taken: 0.744 seconds
                                        INFO  : OK

                                        Select the chart parameters on the left

                                        2,0102,0122,0142,0162,0182,0202,02210G20G30G40G10.5M48.823G
                                        total hours viewedtotal hours viewed

                                        My Snippet

                                        -- Common Table Expression (CTE)
                                        WITH RankedMovies AS (
                                        SELECT
                                        title,
                                        YEAR(releasedate) AS year,
                                        rating,
                                        RANK() OVER (PARTITION BY YEAR(releasedate) ORDER BY rating DESC) AS rank
                                        FROM
                                        netflix2023
                                        )
                                        SELECT
                                        year,
                                        title,
                                        rating
                                        FROM
                                        RankedMovies
                                        WHERE
                                        rank = 1
                                        ORDER BY
                                        year ASC;
                                        XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                          ×
                                          INFO  : Compiling command(queryId=hive_20240327071113_342d1747-9d11-4822-b38a-e4b25f410eff): -- Common Table Expression (CTE)
                                          WITH RankedMovies AS (
                                              SELECT
                                                  title,
                                                  YEAR(releasedate) AS year,
                                                  rating,
                                                  RANK() OVER (PARTITION BY YEAR(releasedate) ORDER BY rating DESC) AS rank
                                              FROM
                                                  netflix2023
                                          )
                                          SELECT
                                              year,
                                              title,
                                              rating
                                          FROM
                                              RankedMovies
                                          WHERE
                                              rank = 1
                                          ORDER BY
                                              year ASC
                                          INFO  : Semantic Analysis Completed
                                          INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:year, type:int, comment:null), FieldSchema(name:title, type:string, comment:null), FieldSchema(name:rating, type:double, comment:null)], properties:null)
                                          INFO  : Completed compiling command(queryId=hive_20240327071113_342d1747-9d11-4822-b38a-e4b25f410eff); Time taken: 0.052 seconds
                                          INFO  : Concurrency mode is disabled, not creating a lock manager
                                          INFO  : Executing command(queryId=hive_20240327071113_342d1747-9d11-4822-b38a-e4b25f410eff): -- Common Table Expression (CTE)
                                          WITH RankedMovies AS (
                                              SELECT
                                                  title,
                                                  YEAR(releasedate) AS year,
                                                  rating,
                                                  RANK() OVER (PARTITION BY YEAR(releasedate) ORDER BY rating DESC) AS rank
                                              FROM
                                                  netflix2023
                                          )
                                          SELECT
                                              year,
                                              title,
                                              rating
                                          FROM
                                              RankedMovies
                                          WHERE
                                              rank = 1
                                          ORDER BY
                                              year ASC
                                          INFO  : Query ID = hive_20240327071113_342d1747-9d11-4822-b38a-e4b25f410eff
                                          INFO  : Total jobs = 1
                                          INFO  : Launching Job 1 out of 1
                                          INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                          INFO  : Session is already open
                                          INFO  : Dag name: -- Common Table Expression (CTE)
                                          WITH ...ASC(Stage-1)
                                          INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                          
                                          INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                          INFO  : Map 1: 1/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                          INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	Reducer 3: 0/1	
                                          INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 0(+1)/1	
                                          INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                                          INFO  : Completed executing command(queryId=hive_20240327071113_342d1747-9d11-4822-b38a-e4b25f410eff); Time taken: 1.007 seconds
                                          INFO  : OK
                                            year title rating
                                            year title rating
                                          12010Guardian: The Lonely and Great God: Season 1 // 도깨비: 시즌18.4
                                          22011The Myth // 神話 // 神话8.1
                                          32012African Queens: Njinga: Limited Series8.4
                                          42013On Children: Season 1 // 你的孩子不是你的孩子: 第 1 季8.9
                                          52013Story of My Family!!!: Season 1 // 俺の家の話: シーズン18.9
                                          62014Shiny_Flakes: The Teenage Drug Lord9.7
                                          72015Naruto Shippuden: Season 10 // NARUTO -ナルト - 疾風伝: 五影編9.3
                                          82016The Dig9.9
                                          92017Switch // ドラマスペシャル「スイッチ」9.7
                                          102017Confessions of an Invisible Girl // Confissões de uma Garota Excluída9.7
                                          112017Overlord IV // オーバーロードⅣ9.7
                                          122018Once Upon A Time: Season 1 // Pada Zaman Dahulu: Musim 110
                                          132019Battle: Freestyle10
                                          142020Geng: The Adventure Begins // Geng: Pengembaraan bermula9.9
                                          152021XXX: State of the Union10
                                          162022Barbie Epic Road Trip10
                                          172022School of Roars: Season 110
                                          182022Everything But a Man10
                                          192023Switch // ドラマスペシャル「スイッチ」9.7

                                          My Snippet

                                          -- Hours Viewed per Genre
                                          SELECT
                                          genre,
                                          SUM(hoursviewed) AS total_hours_viewed
                                          FROM
                                          netflix2023_genre_exploded
                                          GROUP BY
                                          genre
                                          ORDER BY
                                          total_hours_viewed DESC;
                                          XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                            ×
                                            INFO  : Compiling command(queryId=hive_20240327071119_d9dfe93b-53ef-4faa-bfa2-ce399a142b8f): -- Hours Viewed per Genre
                                            SELECT
                                                genre,
                                                SUM(hoursviewed) AS total_hours_viewed
                                            FROM
                                                netflix2023_genre_exploded
                                            GROUP BY
                                                genre
                                            ORDER BY
                                                total_hours_viewed DESC
                                            INFO  : Semantic Analysis Completed
                                            INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:genre, type:string, comment:null), FieldSchema(name:total_hours_viewed, type:bigint, comment:null)], properties:null)
                                            INFO  : Completed compiling command(queryId=hive_20240327071119_d9dfe93b-53ef-4faa-bfa2-ce399a142b8f); Time taken: 0.025 seconds
                                            INFO  : Concurrency mode is disabled, not creating a lock manager
                                            INFO  : Executing command(queryId=hive_20240327071119_d9dfe93b-53ef-4faa-bfa2-ce399a142b8f): -- Hours Viewed per Genre
                                            SELECT
                                                genre,
                                                SUM(hoursviewed) AS total_hours_viewed
                                            FROM
                                                netflix2023_genre_exploded
                                            GROUP BY
                                                genre
                                            ORDER BY
                                                total_hours_viewed DESC
                                            INFO  : Query ID = hive_20240327071119_d9dfe93b-53ef-4faa-bfa2-ce399a142b8f
                                            INFO  : Total jobs = 1
                                            INFO  : Launching Job 1 out of 1
                                            INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                            INFO  : Session is already open
                                            INFO  : Dag name: -- Hours Viewed per Genre
                                            SELECT
                                                ...DESC(Stage-1)
                                            INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                            
                                            INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                            INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	Reducer 3: 0/1	
                                            INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                                            INFO  : Completed executing command(queryId=hive_20240327071119_d9dfe93b-53ef-4faa-bfa2-ce399a142b8f); Time taken: 1.038 seconds
                                            INFO  : OK

                                            Select the chart parameters on the left

                                            DramaComedyShortDocumentaryActionCrimeAnimationAdventureRomanceThrillerHorrorFamilyMysteryBiography

                                            My Snippet

                                            -- Most popular genre by "Total Hours Viewed"
                                            WITH YearlyGenreStats AS (
                                            SELECT
                                            YEAR(releasedate) AS year,
                                            genre,
                                            SUM(hoursviewed) AS total_hours_viewed,
                                            ROW_NUMBER() OVER (PARTITION BY YEAR(releasedate) ORDER BY SUM(hoursviewed) DESC) AS genre_rank
                                            FROM
                                            student.netflix2023_genre_exploded
                                            GROUP BY
                                            YEAR(releasedate),
                                            genre
                                            )
                                            SELECT
                                            year,
                                            genre,
                                            total_hours_viewed
                                            FROM
                                            YearlyGenreStats
                                            WHERE
                                            genre_rank = 1
                                            ORDER BY
                                            year ASC;
                                            XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                              ×
                                              INFO  : Compiling command(queryId=hive_20240327071126_9d847c71-9472-444a-9aee-79c5a72cd6ad): -- Most popular genre by "Total Hours Viewed"
                                              WITH YearlyGenreStats AS (
                                                  SELECT
                                                      YEAR(releasedate) AS year,
                                                      genre,
                                                      SUM(hoursviewed) AS total_hours_viewed,
                                                      ROW_NUMBER() OVER (PARTITION BY YEAR(releasedate) ORDER BY SUM(hoursviewed) DESC) AS genre_rank
                                                  FROM 
                                                      student.netflix2023_genre_exploded
                                                  GROUP BY
                                                      YEAR(releasedate),
                                                      genre
                                              )
                                              SELECT
                                                  year,
                                                  genre,
                                                  total_hours_viewed
                                              FROM
                                                  YearlyGenreStats
                                              WHERE
                                                  genre_rank = 1
                                              ORDER BY
                                                  year ASC
                                              INFO  : Semantic Analysis Completed
                                              INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:year, type:int, comment:null), FieldSchema(name:genre, type:string, comment:null), FieldSchema(name:total_hours_viewed, type:bigint, comment:null)], properties:null)
                                              INFO  : Completed compiling command(queryId=hive_20240327071126_9d847c71-9472-444a-9aee-79c5a72cd6ad); Time taken: 0.029 seconds
                                              INFO  : Concurrency mode is disabled, not creating a lock manager
                                              INFO  : Executing command(queryId=hive_20240327071126_9d847c71-9472-444a-9aee-79c5a72cd6ad): -- Most popular genre by "Total Hours Viewed"
                                              WITH YearlyGenreStats AS (
                                                  SELECT
                                                      YEAR(releasedate) AS year,
                                                      genre,
                                                      SUM(hoursviewed) AS total_hours_viewed,
                                                      ROW_NUMBER() OVER (PARTITION BY YEAR(releasedate) ORDER BY SUM(hoursviewed) DESC) AS genre_rank
                                                  FROM 
                                                      student.netflix2023_genre_exploded
                                                  GROUP BY
                                                      YEAR(releasedate),
                                                      genre
                                              )
                                              SELECT
                                                  year,
                                                  genre,
                                                  total_hours_viewed
                                              FROM
                                                  YearlyGenreStats
                                              WHERE
                                                  genre_rank = 1
                                              ORDER BY
                                                  year ASC
                                              INFO  : Query ID = hive_20240327071126_9d847c71-9472-444a-9aee-79c5a72cd6ad
                                              INFO  : Total jobs = 1
                                              INFO  : Launching Job 1 out of 1
                                              INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                              INFO  : Session is already open
                                              INFO  : Dag name: -- Most popular genre by "Total Hours ...ASC(Stage-1)
                                              INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                              
                                              INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1	Reducer 4: 0/1	
                                              INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 0(+1)/1	Reducer 4: 0/1	
                                              INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	Reducer 4: 1/1	
                                              INFO  : Completed executing command(queryId=hive_20240327071126_9d847c71-9472-444a-9aee-79c5a72cd6ad); Time taken: 0.887 seconds
                                              INFO  : OK

                                              Select the chart parameters on the left

                                              2,0102,0122,0142,0162,0182,0202,0225G10G15G3.5M18.9414G
                                              total_hours_viewedtotal_hours_viewed

                                              My Snippet

                                              -- Average Ratings per Genre
                                              SELECT
                                              genre,
                                              AVG(rating) AS average_rating
                                              FROM
                                              student.netflix2023_genre_exploded
                                              GROUP BY
                                              genre
                                              ORDER BY
                                              average_rating DESC;
                                              XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                                ×
                                                INFO  : Compiling command(queryId=hive_20240327071150_c84ce789-ad28-4e7a-ac90-6d6f128f41ec): -- Average Ratings per Genre
                                                
                                                SELECT
                                                    genre,
                                                    AVG(rating) AS average_rating
                                                FROM
                                                    student.netflix2023_genre_exploded
                                                GROUP BY
                                                    genre
                                                ORDER BY
                                                    average_rating DESC
                                                INFO  : Semantic Analysis Completed
                                                INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:genre, type:string, comment:null), FieldSchema(name:average_rating, type:double, comment:null)], properties:null)
                                                INFO  : Completed compiling command(queryId=hive_20240327071150_c84ce789-ad28-4e7a-ac90-6d6f128f41ec); Time taken: 0.026 seconds
                                                INFO  : Concurrency mode is disabled, not creating a lock manager
                                                INFO  : Executing command(queryId=hive_20240327071150_c84ce789-ad28-4e7a-ac90-6d6f128f41ec): -- Average Ratings per Genre
                                                
                                                SELECT
                                                    genre,
                                                    AVG(rating) AS average_rating
                                                FROM
                                                    student.netflix2023_genre_exploded
                                                GROUP BY
                                                    genre
                                                ORDER BY
                                                    average_rating DESC
                                                INFO  : Query ID = hive_20240327071150_c84ce789-ad28-4e7a-ac90-6d6f128f41ec
                                                INFO  : Total jobs = 1
                                                INFO  : Launching Job 1 out of 1
                                                INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                                INFO  : Session is already open
                                                INFO  : Dag name: -- Average Ratings per Genre
                                                
                                                SELECT
                                                ...DESC(Stage-1)
                                                INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                                
                                                INFO  : Map 1: 0/1	Reducer 2: 0/1	Reducer 3: 0/1
                                                INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1
                                                INFO  : Map 1: 1/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                                INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	Reducer 3: 0/1	
                                                INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 0(+1)/1	
                                                INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                                                INFO  : Completed executing command(queryId=hive_20240327071150_c84ce789-ad28-4e7a-ac90-6d6f128f41ec); Time taken: 5.194 seconds
                                                INFO  : OK

                                                Select the chart parameters on the left

                                                Talk...We...Doc...Ro...Bio...Dra...Thri...Adv...Hor...Fa... SciFiMys...Ga...012345606.839259
                                                average_ratingaverage_rating

                                                My Snippet

                                                -- Most popular genre per year by "Average rating"
                                                WITH YearlyGenreRatings AS (
                                                SELECT
                                                YEAR(releasedate) AS year,
                                                genre,
                                                ROUND(AVG(rating), 2) AS average_rating,
                                                ROW_NUMBER() OVER (PARTITION BY YEAR(releasedate) ORDER BY AVG(rating) DESC) AS rank
                                                FROM
                                                student.netflix2023_genre_exploded
                                                GROUP BY
                                                YEAR(releasedate),
                                                genre
                                                )
                                                SELECT
                                                year,
                                                genre,
                                                average_rating
                                                FROM
                                                YearlyGenreRatings
                                                WHERE
                                                rank = 1
                                                ORDER BY
                                                year ASC;
                                                XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                                  ×
                                                  INFO  : Compiling command(queryId=hive_20240327071205_798f7826-99a7-4d05-ab3d-09601f010832): -- Most popular genre per year by "Average rating"
                                                  WITH YearlyGenreRatings AS (
                                                      SELECT
                                                          YEAR(releasedate) AS year,
                                                          genre,
                                                          ROUND(AVG(rating), 2) AS average_rating,
                                                          ROW_NUMBER() OVER (PARTITION BY YEAR(releasedate) ORDER BY AVG(rating) DESC) AS rank
                                                      FROM 
                                                          student.netflix2023_genre_exploded
                                                      GROUP BY
                                                          YEAR(releasedate),
                                                          genre
                                                  )
                                                  SELECT
                                                      year,
                                                      genre,
                                                      average_rating
                                                  FROM
                                                      YearlyGenreRatings
                                                  WHERE
                                                      rank = 1
                                                  ORDER BY
                                                      year ASC
                                                  INFO  : Semantic Analysis Completed
                                                  INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:year, type:int, comment:null), FieldSchema(name:genre, type:string, comment:null), FieldSchema(name:average_rating, type:double, comment:null)], properties:null)
                                                  INFO  : Completed compiling command(queryId=hive_20240327071205_798f7826-99a7-4d05-ab3d-09601f010832); Time taken: 0.038 seconds
                                                  INFO  : Concurrency mode is disabled, not creating a lock manager
                                                  INFO  : Executing command(queryId=hive_20240327071205_798f7826-99a7-4d05-ab3d-09601f010832): -- Most popular genre per year by "Average rating"
                                                  WITH YearlyGenreRatings AS (
                                                      SELECT
                                                          YEAR(releasedate) AS year,
                                                          genre,
                                                          ROUND(AVG(rating), 2) AS average_rating,
                                                          ROW_NUMBER() OVER (PARTITION BY YEAR(releasedate) ORDER BY AVG(rating) DESC) AS rank
                                                      FROM 
                                                          student.netflix2023_genre_exploded
                                                      GROUP BY
                                                          YEAR(releasedate),
                                                          genre
                                                  )
                                                  SELECT
                                                      year,
                                                      genre,
                                                      average_rating
                                                  FROM
                                                      YearlyGenreRatings
                                                  WHERE
                                                      rank = 1
                                                  ORDER BY
                                                      year ASC
                                                  INFO  : Query ID = hive_20240327071205_798f7826-99a7-4d05-ab3d-09601f010832
                                                  INFO  : Total jobs = 1
                                                  INFO  : Launching Job 1 out of 1
                                                  INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                                  INFO  : Session is already open
                                                  INFO  : Dag name: -- Most popular genre per year by "Ave...ASC(Stage-1)
                                                  INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                                  
                                                  INFO  : Map 1: 0/1	Reducer 2: 0/1	Reducer 3: 0/1	Reducer 4: 0/1
                                                  INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1	Reducer 4: 0/1
                                                  INFO  : Map 1: 1/1	Reducer 2: 0/1	Reducer 3: 0/1	Reducer 4: 0/1	
                                                  INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	Reducer 3: 0/1	Reducer 4: 0/1	
                                                  INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 0(+1)/1	Reducer 4: 0/1	
                                                  INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	Reducer 4: 1/1	
                                                  INFO  : Completed executing command(queryId=hive_20240327071205_798f7826-99a7-4d05-ab3d-09601f010832); Time taken: 5.77 seconds
                                                  INFO  : OK
                                                  columns (4)
                                                  int
                                                  year int
                                                  genre string
                                                  average_rating double
                                                    year genre average_rating
                                                    year genre average_rating
                                                  12010History7.8
                                                  22011Family8.1
                                                  32012Biography8.4
                                                  42013Mystery8.2
                                                  52014Music7.93
                                                  62015Western7.85
                                                  72016Talk-Show7.3
                                                  82017Music7.01
                                                  92018Western7.22
                                                  102019Talk-Show6.98
                                                  112020News6.95
                                                  122021Western7.04
                                                  132022Western7.06
                                                  142023Talk-Show8.11

                                                  My Snippet

                                                  -- Genre Popularity Over Time: Comedy
                                                  SELECT
                                                  YEAR(releasedate) AS year,
                                                  SUM(hoursviewed) AS total_hours_viewed
                                                  FROM
                                                  student.netflix2023_genre_exploded
                                                  GROUP BY
                                                  YEAR(releasedate),
                                                  genre
                                                  HAVING
                                                  genre = "Comedy"
                                                  ORDER BY
                                                  year ASC,
                                                  total_hours_viewed DESC;
                                                  XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                                    ×
                                                    INFO  : Compiling command(queryId=hive_20240327071217_93cc1833-b796-474b-831c-88ef53f697dc): -- Genre Popularity Over Time: Comedy
                                                    SELECT 
                                                        YEAR(releasedate) AS year, 
                                                        SUM(hoursviewed) AS total_hours_viewed
                                                    FROM 
                                                        student.netflix2023_genre_exploded
                                                    GROUP BY 
                                                        YEAR(releasedate), 
                                                        genre
                                                    HAVING
                                                        genre = "Comedy"
                                                    ORDER BY 
                                                        year ASC, 
                                                        total_hours_viewed DESC
                                                    INFO  : Semantic Analysis Completed
                                                    INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:year, type:int, comment:null), FieldSchema(name:total_hours_viewed, type:bigint, comment:null)], properties:null)
                                                    INFO  : Completed compiling command(queryId=hive_20240327071217_93cc1833-b796-474b-831c-88ef53f697dc); Time taken: 0.026 seconds
                                                    INFO  : Concurrency mode is disabled, not creating a lock manager
                                                    INFO  : Executing command(queryId=hive_20240327071217_93cc1833-b796-474b-831c-88ef53f697dc): -- Genre Popularity Over Time: Comedy
                                                    SELECT 
                                                        YEAR(releasedate) AS year, 
                                                        SUM(hoursviewed) AS total_hours_viewed
                                                    FROM 
                                                        student.netflix2023_genre_exploded
                                                    GROUP BY 
                                                        YEAR(releasedate), 
                                                        genre
                                                    HAVING
                                                        genre = "Comedy"
                                                    ORDER BY 
                                                        year ASC, 
                                                        total_hours_viewed DESC
                                                    INFO  : Query ID = hive_20240327071217_93cc1833-b796-474b-831c-88ef53f697dc
                                                    INFO  : Total jobs = 1
                                                    INFO  : Launching Job 1 out of 1
                                                    INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                                    INFO  : Session is already open
                                                    INFO  : Dag name: -- Genre Popularity Over Time: Comedy...DESC(Stage-1)
                                                    INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                                    
                                                    INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                                    INFO  : Map 1: 1/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                                    INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 0(+1)/1	
                                                    INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                                                    INFO  : Completed executing command(queryId=hive_20240327071217_93cc1833-b796-474b-831c-88ef53f697dc); Time taken: 1.201 seconds
                                                    INFO  : OK
                                                    columns (3)
                                                    int
                                                    year int
                                                    total_hours_viewed bigint
                                                      year total_hours_viewed
                                                      year total_hours_viewed
                                                    1201077000000
                                                    22011111800000
                                                    320123500000
                                                    42013196200000
                                                    52014156000000
                                                    62015597500000
                                                    720161296200000
                                                    820172226100000
                                                    920182475200000
                                                    1020193533700000
                                                    1120204579900000
                                                    1220215746600000
                                                    13202211483900000
                                                    14202318941400000

                                                    My Snippet

                                                    -- Genre Popularity Over Time: Drama
                                                    SELECT
                                                    YEAR(releasedate) AS year,
                                                    genre,
                                                    SUM(hoursviewed) AS total_hours_viewed
                                                    FROM
                                                    student.netflix2023_genre_exploded
                                                    GROUP BY
                                                    YEAR(releasedate),
                                                    genre
                                                    HAVING
                                                    genre = "Drama"
                                                    ORDER BY
                                                    year ASC,
                                                    total_hours_viewed DESC;
                                                    XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                                      ×
                                                      INFO  : Compiling command(queryId=hive_20240327071241_b1349af3-cbff-437e-b499-75d08a994795): -- Genre Popularity Over Time: Drama
                                                      SELECT 
                                                          YEAR(releasedate) AS year, 
                                                          genre, 
                                                          SUM(hoursviewed) AS total_hours_viewed
                                                      FROM 
                                                          student.netflix2023_genre_exploded
                                                      GROUP BY 
                                                          YEAR(releasedate), 
                                                          genre
                                                      HAVING
                                                          genre = "Drama"
                                                      ORDER BY 
                                                          year ASC, 
                                                          total_hours_viewed DESC
                                                      INFO  : Semantic Analysis Completed
                                                      INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:year, type:int, comment:null), FieldSchema(name:genre, type:string, comment:null), FieldSchema(name:total_hours_viewed, type:bigint, comment:null)], properties:null)
                                                      INFO  : Completed compiling command(queryId=hive_20240327071241_b1349af3-cbff-437e-b499-75d08a994795); Time taken: 0.026 seconds
                                                      INFO  : Concurrency mode is disabled, not creating a lock manager
                                                      INFO  : Executing command(queryId=hive_20240327071241_b1349af3-cbff-437e-b499-75d08a994795): -- Genre Popularity Over Time: Drama
                                                      SELECT 
                                                          YEAR(releasedate) AS year, 
                                                          genre, 
                                                          SUM(hoursviewed) AS total_hours_viewed
                                                      FROM 
                                                          student.netflix2023_genre_exploded
                                                      GROUP BY 
                                                          YEAR(releasedate), 
                                                          genre
                                                      HAVING
                                                          genre = "Drama"
                                                      ORDER BY 
                                                          year ASC, 
                                                          total_hours_viewed DESC
                                                      INFO  : Query ID = hive_20240327071241_b1349af3-cbff-437e-b499-75d08a994795
                                                      INFO  : Total jobs = 1
                                                      INFO  : Launching Job 1 out of 1
                                                      INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                                      INFO  : Session is already open
                                                      INFO  : Dag name: -- Genre Popularity Over Time: Drama
                                                      ...DESC(Stage-1)
                                                      INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                                      
                                                      INFO  : Map 1: 0/1	Reducer 2: 0/1	Reducer 3: 0/1
                                                      INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1
                                                      INFO  : Map 1: 1/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                                      INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	Reducer 3: 0/1	
                                                      INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 0(+1)/1	
                                                      INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                                                      INFO  : Completed executing command(queryId=hive_20240327071241_b1349af3-cbff-437e-b499-75d08a994795); Time taken: 5.447 seconds
                                                      INFO  : OK
                                                        year genre total_hours_viewed
                                                        year genre total_hours_viewed
                                                      12010Drama18300000
                                                      22011Drama107000000
                                                      32012Drama3500000
                                                      42013Drama104600000
                                                      52014Drama226300000
                                                      62015Drama573800000
                                                      72016Drama1320200000
                                                      82017Drama2038900000
                                                      92018Drama2790800000
                                                      102019Drama3280600000
                                                      112020Drama4884300000
                                                      122021Drama5705100000
                                                      132022Drama15027600000
                                                      142023Drama17416900000

                                                      My Snippet

                                                      -- Keyword Analysis for High-Performing Titles
                                                      WITH HighPerformingTitles AS (
                                                      SELECT
                                                      keywords,
                                                      RANK() OVER (ORDER BY hoursviewed DESC) AS rank
                                                      FROM
                                                      student.netflix2023
                                                      )
                                                      SELECT
                                                      keywords
                                                      FROM
                                                      HighPerformingTitles
                                                      WHERE
                                                      rank <= 10;
                                                      XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                                        ×
                                                        INFO  : Compiling command(queryId=hive_20240327071252_7f460b04-1642-40a3-b1a8-e2adb28965ef): -- Keyword Analysis for High-Performing Titles
                                                        WITH HighPerformingTitles AS (
                                                            SELECT 
                                                                keywords,
                                                                RANK() OVER (ORDER BY hoursviewed DESC) AS rank
                                                            FROM 
                                                                student.netflix2023
                                                        )
                                                        SELECT 
                                                            keywords
                                                        FROM 
                                                            HighPerformingTitles
                                                        WHERE 
                                                            rank <= 10
                                                        INFO  : Semantic Analysis Completed
                                                        INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:keywords, type:string, comment:null)], properties:null)
                                                        INFO  : Completed compiling command(queryId=hive_20240327071252_7f460b04-1642-40a3-b1a8-e2adb28965ef); Time taken: 0.051 seconds
                                                        INFO  : Concurrency mode is disabled, not creating a lock manager
                                                        INFO  : Executing command(queryId=hive_20240327071252_7f460b04-1642-40a3-b1a8-e2adb28965ef): -- Keyword Analysis for High-Performing Titles
                                                        WITH HighPerformingTitles AS (
                                                            SELECT 
                                                                keywords,
                                                                RANK() OVER (ORDER BY hoursviewed DESC) AS rank
                                                            FROM 
                                                                student.netflix2023
                                                        )
                                                        SELECT 
                                                            keywords
                                                        FROM 
                                                            HighPerformingTitles
                                                        WHERE 
                                                            rank <= 10
                                                        INFO  : Query ID = hive_20240327071252_7f460b04-1642-40a3-b1a8-e2adb28965ef
                                                        INFO  : Total jobs = 1
                                                        INFO  : Launching Job 1 out of 1
                                                        INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                                        INFO  : Session is already open
                                                        INFO  : Dag name: -- Keyword Analysis for High-Performing...10(Stage-1)
                                                        INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                                        
                                                        INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	
                                                        INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	
                                                        INFO  : Map 1: 1/1	Reducer 2: 1/1	
                                                        INFO  : Completed executing command(queryId=hive_20240327071252_7f460b04-1642-40a3-b1a8-e2adb28965ef); Time taken: 0.608 seconds
                                                        INFO  : OK
                                                          keywords
                                                          keywords
                                                        1dystopia, rebellion, revolution, brainwashing, execution
                                                        2intruder, executive, losing a job, berserk, jealousy
                                                        3persian empire, empire, 5th century b.c., achaemenid empire, persia
                                                        4producer, three word title, headstrong, arranged marriage, mother
                                                        5revenge, vengeance, lesbian, musician, female musical prodigy
                                                        6tv special, halloween, reenactment, halloween costume, trick or treating
                                                        7poetry, spain
                                                        8prequel, queen, historical, england, queen charlotte character
                                                        9dinosaur, jurassic park, pink haired girl, computer animation, black haired girl
                                                        10christmas, coming out, holidays, lesbian relationship, lesbian
                                                        11money

                                                        My Snippet

                                                        -- "How does the release timing of shows and movies (by season or quarter) affect their viewership and ratings, and how does this vary across different genres?"
                                                        -- extracting the release quarter, aggregating viewership and ratings data by quarter and genre,
                                                        -- and then analyzing the results to identify trends or patterns
                                                        -- Note: this is only an initial exploration, and not a fully fleshed out answer (which would take deeper investigation)
                                                        SELECT
                                                        genre,
                                                        CONCAT('Q', CEIL(MONTH(releasedate)/3)) AS release_quarter, -- Determine the release quarter
                                                        YEAR(releasedate) AS year,
                                                        AVG(hoursviewed) AS average_hours_viewed,
                                                        AVG(rating) AS average_rating,
                                                        COUNT(*) AS number_of_titles
                                                        FROM
                                                        student.netflix2023_genre_exploded
                                                        GROUP BY
                                                        genre,
                                                        YEAR(releasedate),
                                                        CONCAT('Q', CEIL(MONTH(releasedate)/3))
                                                        ORDER BY
                                                        genre,
                                                        year,
                                                        release_quarter;
                                                        XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                                          ×
                                                          INFO  : Compiling command(queryId=hive_20240327071300_385eaf27-9a18-4f92-92cb-baf3bc3f9f53): -- "How does the release timing of shows and movies (by season or quarter) affect their viewership and ratings, and how does this vary across different genres?"
                                                          -- extracting the release quarter, aggregating viewership and ratings data by quarter and genre, 
                                                          -- and then analyzing the results to identify trends or patterns
                                                          SELECT
                                                              genre,
                                                              CONCAT('Q', CEIL(MONTH(releasedate)/3)) AS release_quarter, -- Determine the release quarter
                                                              YEAR(releasedate) AS year,
                                                              AVG(hoursviewed) AS average_hours_viewed,
                                                              AVG(rating) AS average_rating,
                                                              COUNT(*) AS number_of_titles
                                                          FROM
                                                              student.netflix2023_genre_exploded
                                                          GROUP BY
                                                              genre,
                                                              YEAR(releasedate),
                                                              CONCAT('Q', CEIL(MONTH(releasedate)/3))
                                                          ORDER BY
                                                              genre,
                                                              year,
                                                              release_quarter
                                                          INFO  : Semantic Analysis Completed
                                                          INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:genre, type:string, comment:null), FieldSchema(name:release_quarter, type:string, comment:null), FieldSchema(name:year, type:int, comment:null), FieldSchema(name:average_hours_viewed, type:double, comment:null), FieldSchema(name:average_rating, type:double, comment:null), FieldSchema(name:number_of_titles, type:bigint, comment:null)], properties:null)
                                                          INFO  : Completed compiling command(queryId=hive_20240327071300_385eaf27-9a18-4f92-92cb-baf3bc3f9f53); Time taken: 0.025 seconds
                                                          INFO  : Concurrency mode is disabled, not creating a lock manager
                                                          INFO  : Executing command(queryId=hive_20240327071300_385eaf27-9a18-4f92-92cb-baf3bc3f9f53): -- "How does the release timing of shows and movies (by season or quarter) affect their viewership and ratings, and how does this vary across different genres?"
                                                          -- extracting the release quarter, aggregating viewership and ratings data by quarter and genre, 
                                                          -- and then analyzing the results to identify trends or patterns
                                                          SELECT
                                                              genre,
                                                              CONCAT('Q', CEIL(MONTH(releasedate)/3)) AS release_quarter, -- Determine the release quarter
                                                              YEAR(releasedate) AS year,
                                                              AVG(hoursviewed) AS average_hours_viewed,
                                                              AVG(rating) AS average_rating,
                                                              COUNT(*) AS number_of_titles
                                                          FROM
                                                              student.netflix2023_genre_exploded
                                                          GROUP BY
                                                              genre,
                                                              YEAR(releasedate),
                                                              CONCAT('Q', CEIL(MONTH(releasedate)/3))
                                                          ORDER BY
                                                              genre,
                                                              year,
                                                              release_quarter
                                                          INFO  : Query ID = hive_20240327071300_385eaf27-9a18-4f92-92cb-baf3bc3f9f53
                                                          INFO  : Total jobs = 1
                                                          INFO  : Launching Job 1 out of 1
                                                          INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                                          INFO  : Session is already open
                                                          INFO  : Dag name: -- "How does the release t...release_quarter(Stage-1)
                                                          INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                                          
                                                          INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1	
                                                          INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	Reducer 3: 0/1	
                                                          INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                                                          INFO  : Completed executing command(queryId=hive_20240327071300_385eaf27-9a18-4f92-92cb-baf3bc3f9f53); Time taken: 1.334 seconds
                                                          INFO  : OK
                                                            genre release_quarter year average_hours_viewed average_rating number_of_titles
                                                            genre release_quarter year average_hours_viewed average_rating number_of_titles
                                                          1 SciFiQ12015530000071
                                                          2 SciFiQ3201527000007.852
                                                          3 SciFiQ4201519000007.83
                                                          4 SciFiQ12016833333.33333333346.23
                                                          5 SciFiQ2201657000006.152
                                                          6 SciFiQ3201612000005.51
                                                          7 SciFiQ42016164800005.9599999999999995
                                                          8 SciFiQ1201783625006.3258
                                                          9 SciFiQ220171271428.57142857145.89999999999999957
                                                          10 SciFiQ3201714500007.0754
                                                          11 SciFiQ4201740000006.0333333333333339
                                                          12 SciFiQ120182218181.81818181846.86363636363636311
                                                          13 SciFiQ220186792307.6923076927.1384615384615413
                                                          14 SciFiQ320184809090.9090909096.60909090909090911
                                                          15 SciFiQ420183784210.52631578976.69473684210526319
                                                          16 SciFiQ120195026315.78947368456.357894736842105519
                                                          17 SciFiQ220192042857.1428571436.6142857142857147
                                                          18 SciFiQ320195854545.4545454547.0090909090909111
                                                          19 SciFiQ420196892857.1428571436.45714285714285714
                                                          20 SciFiQ120205441176.4705882356.505882352941176417
                                                          21 SciFiQ2202036000006.49285714285714314
                                                          22 SciFiQ320207893333.3333333336.226666666666667515
                                                          23 SciFiQ420206846666.6666666677.04666666666666815
                                                          24 SciFiQ120212108333.33333333356.93333333333333312
                                                          25 SciFiQ2202161000005.936363636363636511
                                                          26 SciFiQ3202186950006.03520
                                                          27 SciFiQ420216923529.4117647065.88235294117647117
                                                          28 SciFiQ1202211333333.3333333346.683333333333334518
                                                          29 SciFiQ22022233187506.9437516
                                                          30 SciFiQ320227157142.8571428576.64761904761904621
                                                          31 SciFiQ4202214361904.7619047616.74761904761904721
                                                          32 SciFiQ12023449250006.58333333333333312
                                                          33 SciFiQ2202324081818.1818181846.09090909090909111
                                                          34ActionQ22010123000006.252
                                                          35ActionQ3201068000006.61
                                                          36ActionQ1201175000007.31
                                                          37ActionQ32011947000006.31
                                                          38ActionQ2201366000004.41
                                                          39ActionQ320139000006.61
                                                          40ActionQ4201316000007.64
                                                          41ActionQ1201423750006.84
                                                          42ActionQ32014221750007.5254
                                                          43ActionQ42014303000006.73
                                                          44ActionQ12015181250006.1250000000000018
                                                          45ActionQ2201565000007.4666666666666679
                                                          46ActionQ3201549000006.71666666666666812
                                                          47ActionQ4201525400006.66000000000000110
                                                          48ActionQ120161458333.33333333336.57499999999999912
                                                          49ActionQ220165994117.6470588236.80588235294117617
                                                          50ActionQ3201611783333.3333333347.100000000000000524
                                                          51ActionQ420168034782.6086956526.70869565217391423
                                                          52ActionQ1201730500006.77647058823529334
                                                          53ActionQ220177284615.3846153856.28076923076922926
                                                          54ActionQ3201789718756.18750000000000132
                                                          55ActionQ420174507142.8571428576.50178571428571556
                                                          56ActionQ120184036538.46153846156.56730769230769252
                                                          57ActionQ220184051162.79069767436.588372093023254543
                                                          58ActionQ320185067241.3793103456.78965517241379458
                                                          59ActionQ420185751851.8518518526.34320987654321281
                                                          60ActionQ1201962600006.52399999999999850
                                                          61ActionQ2201937800006.57999999999999855
                                                          62ActionQ320197024390.2439024396.75243902439024282
                                                          63ActionQ420196334020.6185567016.65876288659793897
                                                          64ActionQ1202070000006.6186046511627986
                                                          65ActionQ220207906756.7567567566.80405405405405574
                                                          66ActionQ320204888235.2941176476.656862745098038102
                                                          67ActionQ420207512820.5128205136.80769230769230778
                                                          68ActionQ1202110567142.8571428566.392857142857141570
                                                          69ActionQ220216670666.6666666676.568000000000000575
                                                          70ActionQ320216666666.6666666676.58888888888888781
                                                          71ActionQ420218727272.7272727276.480909090909091110
                                                          72ActionQ120227216304.3478260876.7619565217391392
                                                          73ActionQ220228744954.1284403676.5880733944954155109
                                                          74ActionQ320229747252.7472527476.84945054945054991
                                                          75ActionQ4202221915441.176470596.474264705882357136
                                                          76ActionQ1202359413888.888888896.86805555555555472
                                                          77ActionQ2202330069696.969696976.48181818181818466
                                                          78AdventureQ22010176000007.252
                                                          79AdventureQ3201072000006.52499999999999954
                                                          80AdventureQ1201175000007.31
                                                          81AdventureQ32013128000005.6999999999999992
                                                          82AdventureQ42013230000071
                                                          83AdventureQ120143133333.33333333356.8333333333333333
                                                          84AdventureQ220145000008.51
                                                          85AdventureQ3201439000006.9666666666666683
                                                          86AdventureQ42014237000006.652
                                                          87AdventureQ1201520971428.571428576.4428571428571437
                                                          88AdventureQ220159466666.6666666666.6222222222222229
                                                          89AdventureQ3201545500006.55714285714285814
                                                          90AdventureQ4201510409090.9090909086.74545454545454611
                                                          91AdventureQ1201665000006.3857142857142867
                                                          92AdventureQ220168441666.6666666666.82499999999999912
                                                          93AdventureQ3201697600007.17000000000000220
                                                          94AdventureQ420165203846.1538461546.19999999999999926
                                                          95AdventureQ120173903571.42857142866.58928571428571428
                                                          96AdventureQ2201751600006.20999999999999930
                                                          97AdventureQ3201786500006.43235294117647134
                                                          98AdventureQ420175108510.6382978736.57446808510638547
                                                          99AdventureQ120182832727.2727272736.45272727272727155
                                                          100AdventureQ220185697826.08695652156.52173913043478246

                                                          My Snippet

                                                          -- "What are the emerging trends in viewer interests based on the popularity of certain keywords within show descriptions over time?"
                                                          -- Note: Similarly, this is only an attempt at an initial exploration
                                                          SELECT
                                                          YEAR(releasedate) AS year,
                                                          keyword,
                                                          COUNT(*) AS keyword_count,
                                                          AVG(rating) AS average_rating,
                                                          SUM(hoursviewed) AS total_hours_viewed
                                                          FROM
                                                          (
                                                          SELECT
                                                          releasedate,
                                                          rating,
                                                          hoursviewed,
                                                          lower(word) AS keyword
                                                          FROM
                                                          student.netflix2023
                                                          LATERAL VIEW
                                                          explode(split(description, ' ')) wordsTable AS word
                                                          ) AS exploded_keywords
                                                          WHERE
                                                          keyword IN ('space', 'alien', 'future')
                                                          GROUP BY
                                                          YEAR(releasedate),
                                                          keyword
                                                          XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
                                                            ×
                                                            INFO  : Compiling command(queryId=hive_20240327071309_58c63f40-31bb-4f5b-b6a8-50e62d9632e3): SELECT
                                                                YEAR(releasedate) AS year,
                                                                keyword,
                                                                COUNT(*) AS keyword_count,
                                                                AVG(rating) AS average_rating,
                                                                SUM(hoursviewed) AS total_hours_viewed
                                                            FROM
                                                                (
                                                                    SELECT
                                                                        releasedate,
                                                                        rating,
                                                                        hoursviewed,
                                                                        lower(word) AS keyword
                                                                    FROM
                                                                        student.netflix2023
                                                                    LATERAL VIEW
                                                                        explode(split(description, ' ')) wordsTable AS word
                                                                ) AS exploded_keywords
                                                            WHERE
                                                                keyword IN ('space', 'alien', 'future')
                                                            GROUP BY
                                                                YEAR(releasedate),
                                                                keyword
                                                            ORDER BY
                                                                year ASC,
                                                                keyword_count DESC
                                                            INFO  : Semantic Analysis Completed
                                                            INFO  : Returning Hive schema: Schema(fieldSchemas:[FieldSchema(name:year, type:int, comment:null), FieldSchema(name:keyword, type:string, comment:null), FieldSchema(name:keyword_count, type:bigint, comment:null), FieldSchema(name:average_rating, type:double, comment:null), FieldSchema(name:total_hours_viewed, type:bigint, comment:null)], properties:null)
                                                            INFO  : Completed compiling command(queryId=hive_20240327071309_58c63f40-31bb-4f5b-b6a8-50e62d9632e3); Time taken: 0.022 seconds
                                                            INFO  : Concurrency mode is disabled, not creating a lock manager
                                                            INFO  : Executing command(queryId=hive_20240327071309_58c63f40-31bb-4f5b-b6a8-50e62d9632e3): SELECT
                                                                YEAR(releasedate) AS year,
                                                                keyword,
                                                                COUNT(*) AS keyword_count,
                                                                AVG(rating) AS average_rating,
                                                                SUM(hoursviewed) AS total_hours_viewed
                                                            FROM
                                                                (
                                                                    SELECT
                                                                        releasedate,
                                                                        rating,
                                                                        hoursviewed,
                                                                        lower(word) AS keyword
                                                                    FROM
                                                                        student.netflix2023
                                                                    LATERAL VIEW
                                                                        explode(split(description, ' ')) wordsTable AS word
                                                                ) AS exploded_keywords
                                                            WHERE
                                                                keyword IN ('space', 'alien', 'future')
                                                            GROUP BY
                                                                YEAR(releasedate),
                                                                keyword
                                                            ORDER BY
                                                                year ASC,
                                                                keyword_count DESC
                                                            INFO  : Query ID = hive_20240327071309_58c63f40-31bb-4f5b-b6a8-50e62d9632e3
                                                            INFO  : Total jobs = 1
                                                            INFO  : Launching Job 1 out of 1
                                                            INFO  : Starting task [Stage-1:MAPRED] in serial mode
                                                            INFO  : Session is already open
                                                            INFO  : Dag name: SELECT
                                                                YEAR(releasedate) AS year,...DESC(Stage-1)
                                                            INFO  : Status: Running (Executing on YARN cluster with App id application_1634527506680_1335)
                                                            
                                                            INFO  : Map 1: 0/1	Reducer 2: 0/1	Reducer 3: 0/1
                                                            INFO  : Map 1: 0(+1)/1	Reducer 2: 0/1	Reducer 3: 0/1
                                                            INFO  : Map 1: 1/1	Reducer 2: 0(+1)/1	Reducer 3: 0/1	
                                                            INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 0(+1)/1
                                                            INFO  : Map 1: 1/1	Reducer 2: 1/1	Reducer 3: 1/1	
                                                            INFO  : Completed executing command(queryId=hive_20240327071309_58c63f40-31bb-4f5b-b6a8-50e62d9632e3); Time taken: 5.942 seconds
                                                            INFO  : OK
                                                              year keyword keyword_count average_rating total_hours_viewed
                                                              year keyword keyword_count average_rating total_hours_viewed
                                                            12011space16.24800000
                                                            22013space15.72400000
                                                            32014future27.55000000000000113600000
                                                            42015future46.0530100000
                                                            52015alien15.98800000
                                                            62015space16.244000000
                                                            72016future76.52857142857142970000000
                                                            82016alien66.93333333333333417300000
                                                            92016space26.5500000000000011500000
                                                            102017alien146.735714285714287121900000
                                                            112017future86.012520500000
                                                            122017space37.03333333333333442400000
                                                            132018alien226.527272727272727115400000
                                                            142018future156.50666666666666745500000
                                                            152018space27.14999999999999956400000
                                                            162019alien207.075123000000
                                                            172019future186.82222222222222287600000
                                                            182019space106.92999999999999822000000
                                                            192020alien226.65909090909090974500000
                                                            202020future196.105263157894737127200000
                                                            212020space107.22000000000000150600000
                                                            222021alien196.94736842105263103600000
                                                            232021future96.00000000000000121400000
                                                            242021space65.38333333333333346200000
                                                            252022alien176.223529411764706262900000
                                                            262022future166.537500000000001182800000
                                                            272022space97.2111111111111174500000
                                                            282023alien146.5928571428571431524200000
                                                            292023future115.781818181818182563100000
                                                            302023space14.465200000

                                                            There are no snippets configured.

                                                            Add a snippet to start your new notebook

                                                            Hive a14c6a9b9c5d91a9:e2073b6e89b64bac


                                                            Drop iPython/Zeppelin notebooks here

                                                            Upload progress

                                                            Hue and the Hue logo are trademarks of Cloudera, Inc. Query. Explore. Repeat.
                                                            LinesyearLinesyearnull_titles